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3 
Tools for Software Evolution 

Men are only as good as their technical development allows 
them to be.—George Orwell, Inside the Whale 

 

Games, statistical tests, and genetic algorithms all rely on random numbers. Unfortunately, the 
built-in rand function is entirely inadequate in circumstances where thousands—or even 
millions—of random values need to be generated. A run of the algorithm from Chapter 2 may 
use a hundred thousand or more random values. If the random number “generator” produces 
repetitive or cyclical values, the algorithm is unlikely to produce satisfactory results. 

Random Numbers 
A random number is just that: a number whose value cannot be predicted in advance of its 

existence. While the human mind has been known to be unpredictable, it isn't very good at 
generating a completely unrelated set of numbers. Try creating a list of twenty random integers 
selected from the range one through one hundred, inclusive. Are you sure that your numbers are 
really random, and not simply fragments of old telephone numbers or checkbook balances? And 
wouldn't it be tedious if you had to generate a thousand, or a million random numbers? 

Computers are supposed to be good at reducing tedious numeric operations. Unfortunately, 
computers perform calculations via algorithms, and truly random numbers cannot be generated 
by an algorithm. By definition, an algorithm is a specific sequence of operations that produces a 
predictable output for a given set of parameters. In the case of random numbers, the last thing we 
want is something predictable! The best we can do with a computer is create an algorithm that 
appears to generate a random sequence of numbers. The numbers aren't really random—a human 
with a sharp mind or a calculator could predict the numbers in the sequence by following the 
algorithm. But the sequence of numbers is very difficult to follow, and a human looking at the 
values will not be able to see any algorithmic pattern to them. For practical applications, pseudo-
random numbers suffice. 

What we are striving for is something mathematicians call a uniform deviate: a sequence such 
that every number in a given range has an equal chance of being produced. 

“Randomizing” Algorithms 
In general, a pseudo-random number generator is initialized with a seed value that begins the 

sequence. A set of mathematical operations is performed on the seed, generating a value that is 
reported as a pseudo-random number. That return value is then used as the next seed value. 
Researchers have devoted copious time to inventing and analyzing pseudo-random number 
generators. The goal of this research has been to produce the most unpredictable sequence of 
values. Designing a good random number generator involves solving two problems: 
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• Increasing the size of the repetition cycle. As the algorithm is applied, the seed will 
eventually return to its starting value, and the values start repeating themselves. An 
algorithm that repeats after generating a million numbers is more useful than a 
generator that repeats itself after only a hundred values. 

• Avoiding predictability. A random number generator that always returns values with 
the same last digit is worthless. In general, any patterns in the output render a 
generator useless for stochastic computing. 

While many fancy and complicated algorithms can generate pseudo-random numbers, the 
most commonly-used algorithm is also one of the simplest. First introduced by D. Lehmer in 
1951, the linear congruential method involves only two mathematical operations. The formula 
is: 

)(mod1 mcaNN ii +=+  

N is your “random” number, and each successive value (known as a seed) is based on the 
previous one. Each selection of a, c, and m produces a sequence of values that will eventually 
cycle back to the starting value of N. The equation’s factors determine the “randomness” of 
values and the number of iterations that can be performed before numbers start to repeat. The 
maximum repetition period is m, but not every combination of a, c, and m will produce a 
maximal period—and most factor sets produce useless sequences. For example, if a=1, c = 1, and 
m = 1, the algorithm will simply count by ones! 

Standard C uses the following linear congruential generator in implementing the rand and 
srand functions: 

static unsigned long next = 1; 
 
int rand(void) 
{ 
    next = next * 1103515245 + 12345; 
    return ((unsigned int) (next / 65536UL) % 0x32767UL); 
} 
 
void srand(unsigned int seed) 
{ 
    next = seed; 
} 

The Standard C algorithm is a slight elaboration on the basic linear congruential algorithm, in 
that it uses a long for the seed, but returns only an int. The code above assumes 32-bit longs and 
16-bit ints. 

So why not use rand? Because the algorithm is inadequate for many applications. And what’s 
wrong with a linear congruential random number generator? Nothing, so long as your random 
numbers don’t need to be very unpredictable and the repetition of those values is not important to 
your work. The output of rand is limited, providing values that only lie between 0 and 32,767, 
inclusive. In other words, the Standard C generator will produce only a few thousand values 
before repeating itself—a fatal problem for genetic algorithms that rely on vast quantities of 
random values. Aside from their numerical limitations, rand and srand have several faults from 
a software engineering standpoint: 
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• A program must explicitly call srand to initialize the seed. If srand isn't called, the 
default value of seed will be used, and every execution of the program will generate 
the same sequence of pseudo-random numbers. 

• Since srand and rand are two separate functions, seed is defined as a global 
variable. Good programmers avoid global variables, even when those that can be 
hidden using the static keyword. 

• Since there is only one seed value, only one sequence of pseudo-random numbers is 
generated in a program. Often, I like to have separate random number generators for 
different parts of a program. 

• The ANSI rand function returns values between 0 and UINT_MAX. In most cases, 
I want to retrieve random values that are within a specific range, say from 1 to 100, 
or between 0.0 and 1.0. 

• I might want to obtain random numbers that aren’t longs. A templatized class could 
provide the flexibility to generate random values for any type. 

Other problems exist with the Standard rand. Producing a random floating-point value 
requires a program to divide the result of rand by the constant RAND_MAX (as I did in Chapter 
2). Even worse, some mathematically-inept compiler vendors try to improve on rand, using cute 
little byte-swapping tricks that only reduce the period of repetition! Statistically, even the best 
linear congruential generators suffer from convergence in their numeric sequences, and the ANSI 
generator is not the theoretical best. 

A Minimal Standard 
A theoretical best does exist, as the result of research by S. K. Park and K. W. Miller. For the 

multiplicative algorithm to be effective, a and m can only take on a very few values; m most 
certainly must be prime, for example. Park & Miller identified the values a = 16807, m = 
2147483647, and c = 0 as producing the most statistically-random values for 32-bit signed 
(usually long) integers. 

Note: For producing 16-bit values, a good pair of numbers is a = 171, m = 30269, c = 0. 
Park & Miller also suggested other acceptable values for a in 32-bit algorithms: 42871 and 
69621. 

One more topic to cover: overflow in multiplication. Obviously, if N is large enough, 
multiplying by another large value will exceed the maximum value of a long, causing an 
arithmetic overflow before the modulus by m. To prevent overflow, we can use an approximate 
factorization of m, based on the formula known as Schrage’s Method: 

raqmamramq +=== ,mod;/  
 

Foundation for a Hierarchy 
I began with an abstract base class, Generator, defined in the namespace 

Coyote::UniformDeviate. The nested namespace keeps the “internal” uniform deviate 
identifiers from conflicting with any other names I’ve declared in my general Coyote 
namespace.  Generator declares the attributes of any “random number generator”, regardless of 
algorithm. 
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namespace Coyote 
{ 
    namespace UniformDeviate 
    { 
        //-------------------------------------------------- 
        // class Generator - declaration 
        class Generator 
        { 
        protected: 
            // sets default seed argument from system time 
            static long set_seed_from_time() 
            { 
                return (long)time(NULL); 
            } 
 
        public: 
            // constructor 
            Generator(long initSeed = set_seed_from_time()); 
 
            // destructor 
            virtual ~Generator(); 
 
            // set seed value 
            virtual void set_seed(long newSeed = set_seed_from_time()); 
 
            // get the current "random" value 
            virtual long get_deviate(); 
 
            // calculate next seed value 
            virtual void next_value() = 0; 
 
        protected: 
            long m_seed;  // the seed for generator 1 
        }; 
 
        inline void UniformDeviate::Generator::set_seed(long initSeed) 
        { 
            m_seed = initSeed; 
        } 
 
        // get the current "random" value 
        inline long UniformDeviate::Generator::get_deviate() 
        { 
            return m_seed; 
        } 
    } 
} 

The private set_seed_from_time  method automatically initializes the constructor’s seed 
parameter with the current system time. You can, of course, supply a specific seed when 
constructing a Generator object; any time the generator is run with a specific seed, it will return 
the same sequence of values, a useful technique when you require reproducible results (as in, for 
example, a scientific paper). 

I defined the Generator constructor and destructor in an implementation file. In general, 
constructors and destructor should not be defined as inline functions in a header; compilers 
automatically generate calls to these functions under many circumstances, and code can quickly 
bloat if every instance of creation is inline. 

// constructor 
UniformDeviate::Generator::Generator(long initSeed) 
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{ 
    set_seed(initSeed); 
} 
 
// destructor 
UniformDeviate::Generator::~Generator() 
{ 
    // does nothing in this base class 
} 

My basic implementation of Generator is MinimalStandard, a template class with 
arguments that define values for a and m. By default, I use the Park-Miller numbers, but later in 
the chapter, I’ll be building better algorithms by combining MinimalStandard objects with 
different a and m values. The compiler will interpret these parameter values as manifest 
constants, allowing a good compiler to generate efficient code for next_value . 

namespace Coyote 
{ 
    namespace UniformDeviate 
    { 
        //-------------------------------------------------- 
        // class MinimalStandard - declaration 
        template <long A = 16807L, long M = LONG_MAX> 
             class MinimalStandard : public Generator 
        { 
        public: 
            // constructor 
            MinimalStandard(long initSeed = set_seed_from_time()); 
 
            // destructor 
            virtual ~MinimalStandard(); 
 
            // calculate next seed value 
            virtual void next_value(); 
 
            // interrogators 
            long get_M() { return M; } 
            long get_A() { return A; } 
 
        protected: 
            const long Q; // quotient  (used in Schrage's method) 
            const long R; // remainder (used in Schrage's method) 
        }; 
 
        //-------------------------------------------------- 
        // class MinimalStandard - definition 
 
        // constructor 
        template <long A, long M> 
             MinimalStandard<A,M>::MinimalStandard(long initSeed) 
            : Generator(initSeed), Q(M/A), R(M%A) 
        { 
            // nothing here 
        } 
 
        // destructor 
        template <long A, long M> 
            MinimalStandard<A,M>::~MinimalStandard() 
        { 
            // nothing here, either 
        } 
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        // move to next seed 
        template <long A, long M> 
            void MinimalStandard<A,M>::next_value() 
        { 
            // compute seed = (a * seed) % m, using Schrage's method  
            long k = m_seed / Q; 
 
            m_seed = A * (m_seed - k * Q) - R * k; 
 
            if (m_seed < 0) 
                m_seed += M; 
        } 
    } 
} 

The MinimalStandard class is only the beginning; it provides a base from which we can 
build even more sophisticated algorithms. 

Better than Minimal 
One problem with the Minimal Standard is that it can suffer from sequences of repetitive 

bytes or values. For example, certain large values may always be followed by very small values. 
Such problems can be avoided by using the generator to randomize itself. The best-known 
technique is called a shuffle: Create an small array, load it with the first few generated values, 
then use subsequent invocations of the algorithm to generate an random index into that array; 
return the indexed value, and replace it in the array with the another random value. Yes, I know 
it sounds complicated—but really, all we’re doing is mixing up the generated values so that they 
don’t appear in the usual sequence, thus avoiding any correlations or predictable sequences. 

Adding a shuffle to MinimalStandard is easy; I derived a new template class, 
GeneralPurpose, the includes the shuffle while using the algorithmic code it inherits. 

        //-------------------------------------------------- 
        // class GeneralPurpose - declaration 
        template <long A = 16807L, long M = LONG_MAX> 
            class GeneralPurpose : public MinimalStandard<A,M> 
        { 
        public: 
            // constructor 
            GeneralPurpose(long initSeed = set_seed_from_time()); 
 
            // destructor 
            virtual ~GeneralPurpose(); 
 
            // set seed value 
            virtual void set_seed(long newSeed = set_seed_from_time()); 
 
            // get the current "random" value 
            virtual long get_deviate(); 
 
            // calculate next seed value 
            virtual void next_value(); 
 
        protected: 
            // set seed value 
            void init_table(long seed); 
 
            // table factors 
            const long TABLE_SIZE;    // size of the table 
            const long TABLE_DIV;     // ratio of M / TABLE_SIZE 
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            // shuffle table and values used therein 
            long * m_table; 
            long   m_shuffle;  
        }; 
 
        //-------------------------------------------------- 
        // class GeneralPurpose - definition 
 
        // constructor 
        template <long A, long M> 
            GeneralPurpose<A,M>::GeneralPurpose(long initSeed) 
            : MinimalStandard<A,M>(initSeed), 
              TABLE_SIZE(32L), 
              TABLE_DIV(1L + (M - 1L) / TABLE_SIZE) 
        { 
            m_table = new long[TABLE_SIZE]; 
            init_table(initSeed); 
        } 
 
        // destructor 
        template <long A,long M> GeneralPurpose<A,M>::~GeneralPurpose() 
        { 
            delete [] m_table; 
        } 
 
        // set seed value 
        template <long A, long M> 
            inline void GeneralPurpose<A,M>::set_seed(long newSeed) 
        { 
            init_table(newSeed); 
        } 
 
        template <long A, long M> 
            void GeneralPurpose<A,M>::init_table(long seed) 
        { 
            m_seed    = seed; 
            m_shuffle = 0; 
 
            // avoid zero or negative seed! 
            if (m_seed <= 0) 
                m_seed = 299792458L; 
 
            // initialize the table by getting the first few deviates 
            for (int i = TABLE_SIZE + 7; i >= 0; --i) 
            { 
                // get next value in sequence 
                MinimalStandard<A,M>::next_value(); 
 
                // store it in a table entry 
                if (i < TABLE_SIZE) 
                    m_table[i] = m_seed; 
            } 
 
            // select our shuffled-out value 
            m_shuffle = m_table[0]; 
        } 
 
        // get the current "random" value 
        template <long A, long M> 
            inline long GeneralPurpose<A,M>::get_deviate() 
        { 
            return m_shuffle; 
        } 



8 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution 

 
        // move to next seed 
        template <long A,long M> void GeneralPurpose<A,M>::next_value() 
        { 
            // get next value in sequence 
            MinimalStandard<A,M>::next_value(); 
 
            // shuffle out table value; save current seed in its place 
            size_t i = m_shuffle / TABLE_DIV; 
 
            m_shuffle  = m_table[i]; 
            m_table[i] = m_seed; 
        } 

The Best of the Best 
Even the Minimal Standard can show weaknesses when generating millions of values. In a 

1988 issue of Communications of the ACM, Paul L’Ecuyer suggested a variety of algorithms for 
the production of reliable, long-period random deviates. By combining two generators based on 
the Minimal Standard, L’Ecuyer creates a routine that avoids the pitfalls of simpler algorithms. 
The generator, which I’ve used below in my Random class template, produces uniform random 
deviates between 0.0 and 1.0. 

In a nutshell, L’Ecuyer’s algorithm uses an approximate factorization, “shuffling” each result 
to remove correlation in low-order bits. A single generator of that type will have a repetition 
period of about 108—which, believe it or not, may not be adequate for some very complex 
genetic algorithms. Running a thousand generations for a population of a hundred chromosomes 
may require millions of random values. Combining two such generators with a judicious 
selection of factors the period to approximately 2.3 × 1018, which should be more than effective 
in genetic algorithms of any practical scope. The LEcuyer class is not a template, but rather a 
regular class based on instantiations of the GeneralPurpose and MinimalStandard template 
classes. 

        //-------------------------------------------------- 
        // class LEcuyer - declaration 
        class LEcuyer : public Generator 
        { 
        public: 
            // constructor 
            LEcuyer(long initSeed = set_seed_from_time()); 
 
            // destructor 
            virtual ~LEcuyer(); 
 
            // set seed value 
            virtual void set_seed(long newSeed = set_seed_from_time()); 
 
            // get the current "random" value 
            virtual long get_deviate(); 
 
            // calculate next seed value 
            virtual void next_value(); 
 
        protected: 
            // internal generators 
            GeneralPurpose <40014L,2147483563L> m_rand1; 
            MinimalStandard<40692L,2147483399L> m_rand2; 
        }; 
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        // get the current "random" value 
        inline long LEcuyer::get_deviate() 
        { 
            return m_seed; 
        } 
 
    } // end namespace UniformDeviate 
 
 
//-------------------------------------------------- 
// class LEcuyer - definition 
 
// constructor 
LEcuyer::LEcuyer(long initSeed) 
    : m_rand1(initSeed), m_rand2(initSeed) 
{ 
    m_seed = m_rand1.get_deviate(); 
} 
 
// destructor 
LEcuyer::~LEcuyer() 
{ 
    // nothing here 
} 
 
// set seed value 
void LEcuyer::set_seed(long newSeed) 
{ 
    m_rand1.set_seed(newSeed); 
    m_rand2.set_seed(newSeed); 
    m_seed = m_rand1.get_deviate(); 
} 
 
// move to next seed 
void LEcuyer::next_value() 
{ 
    // get next value in sequence 
    m_rand1.next_value(); 
    m_rand2.next_value(); 
 
    // combined values 
    m_seed = m_rand1.get_deviate() - m_rand2.get_deviate(); 
 
    if (m_seed < 0) 
        m_seed += (m_rand1.get_M() - 1); 
} 

Random Templates 
The aforementioned classes provide the algorithmic machinery for random number 

generation, and are all defined in the Coyote::UniformDeviate namespace. To define practical 
random number generators, I created a pair of very simple templates, Random (based on 
GeneralPurpose) and RandomLEcuyer (a derivative of LEcuyer). These templates specialize 
on a type that is to be randomized. I’ve created specializations for common types like int, size_t, 
float, and double. 

    //-------------------------------------------------- 
    // class Random - declaration 
    template <typename T> class Random 
         : private UniformDeviate::GeneralPurpose<> 
    { 
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    public: 
        // constructor 
        Random(long initSeed = set_seed_from_time()); 
 
        // get value 
        T operator () (); 
        T operator () (T limit);      // range 0 to < max 
        T operator () (T min, T max); // range min to max 
    }; 
 
    //-------------------------------------------------- 
    // class Random - definition 
    template <typename T> Random<T>::Random(long initSeed) 
        : UniformDeviate::GeneralPurpose<>(initSeed) 
    { 
        // nothing else to do 
    } 
 
    //-------------------------------------------------- 
    // class Random: <float> specialization 
 
    float Random<float>::operator () (); 
 
    template <> inline float Random<float>::operator () (float limit) 
    { 
        return limit * Random<float>::operator ()(); 
    } 
 
    template <> inline float Random<float>::operator () (float min, 
                                                         float max) 
    { 
        return min + (max - min) * Random<float>::operator ()(); 
    } 
 
    //-------------------------------------------------- 
    // class Random: <double> specialization 
 
    double Random<double>::operator () (); 
 
    template <> inline double Random<double>::operator () 
                                     (double limit) 
    { 
        return limit * Random<double>::operator ()(); 
    } 
 
    template <> inline double Random<double>::operator () (double min, 
                                                           double max) 
    { 
        return min + (max - min) * Random<double>::operator ()(); 
    } 
 
    //-------------------------------------------------- 
    // class Random: <int> specialization 
 
    template <> inline int Random<int>::operator () () 
    { 
        next_value(); 
        return int(get_deviate()); 
    } 
 
    template <> inline int Random<int>::operator () (int limit) 
    { 
        next_value(); 
        return int((get_deviate()) % long(limit)); 
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    } 
 
    template <> inline int Random<int>::operator () (int min, int max) 
    { 
        next_value(); 
        return min + Random<int>::operator ()(max - min + 1); 
    } 
 
    //-------------------------------------------------- 
    // class Random: <size_t> specialization 
 
    template <> inline size_t Random<size_t>::operator () () 
    { 
        next_value(); 
        return size_t(get_deviate()); 
    } 
 
    template <> inline size_t Random<size_t>::operator () 
                                      (size_t limit) 
    { 
        next_value(); 
        return size_t((get_deviate()) % long(limit)); 
    } 
 
    template <> inline size_t Random<size_t>::operator () (size_t min, 
                                                           size_t max) 
    { 
        next_value(); 
        return min + Random<size_t>::operator ()(max - min + 1); 
    } 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer - declaration 
    template <typename T> class RandomLEcuyer 
        : private UniformDeviate::LEcuyer 
    { 
    public: 
        // constructor 
        RandomLEcuyer(long initSeed = set_seed_from_time()); 
 
        // get value 
        T operator () (); 
        T operator () (T limit);      // range 0 to < max 
        T operator () (T min, T max); // range min to max 
    }; 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer - definition 
    template <typename T> RandomLEcuyer<T>::RandomLEcuyer 
                                    (long initSeed) 
        : UniformDeviate::LEcuyer(initSeed) 
    { 
        // nothing else to do 
    } 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer: <float> specialization 
 
    float RandomLEcuyer<float>::operator () (); 
 
    template <> inline float RandomLEcuyer<float>::operator () 
                                           (float limit) 
    { 
        return limit * RandomLEcuyer<float>::operator ()(); 
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    } 
 
    template <> inline float RandomLEcuyer<float>::operator () 
                               (float min, float max) 
    { 
        return min + (max - min) * RandomLEcuyer<float>::operator ()(); 
    } 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer: <double> specialization 
 
    double RandomLEcuyer<double>::operator () (); 
 
    template <> inline double RandomLEcuyer<double>::operator () 
                                               (double limit) 
    { 
        return limit * RandomLEcuyer<double>::operator ()(); 
    } 
 
    template <> inline double RandomLEcuyer<double>::operator () 
                                    (double min, double max) 
    { 
        return min + (max-min) * RandomLEcuyer<double>::operator ()(); 
    } 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer: <int> specialization 
 
    template <> inline int RandomLEcuyer<int>::operator () () 
    { 
        next_value(); 
        return int(get_deviate()); 
    } 
 
    template <> inline int RandomLEcuyer<int>::operator () (int limit) 
    { 
        next_value(); 
        return int((get_deviate()) % long(limit)); 
    } 
 
    template <> inline int RandomLEcuyer<int>::operator () 
                                    (int min, int max) 
    { 
        next_value(); 
        return min + RandomLEcuyer<int>::operator ()(max - min + 1); 
    } 
 
    //-------------------------------------------------- 
    // class RandomLEcuyer: <size_t> specialization 
 
    template <> inline size_t RandomLEcuyer<size_t>::operator () () 
    { 
        next_value(); 
        return size_t(get_deviate()); 
    } 
 
    template <> inline size_t RandomLEcuyer<size_t>::operator () 
                                            (size_t limit) 
    { 
        next_value(); 
        return size_t((get_deviate()) % long(limit)); 
    } 
 
    template <> inline size_t RandomLEcuyer<size_t>::operator () 
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                                    (size_t min, size_t max) 
    { 
        next_value(); 
        return min + RandomLEcuyer<size_t>::operator ()(max - min + 1); 
    } 
 
} // end namespace Coyote 

The double and float specializations were too complicated to be implemented entirely in a 
header file. Note the conditional compilation statements that handle GNU C++’s lack of full 
support for the Standard C++ numeric_limits header. 

//-------------------------------------------------- 
// class Random: <float> specialization 
 
float Random<float>::operator () () 
{ 
    static const float factor1 = 1.0F / float(get_M()); 
 
    #ifdef __GNUC__ 
    static const float factor2 = 1.0F - FLT_EPSILON; 
    #else 
    static const float factor2 = 1.0F - numeric_limits<float>::epsilon(); 
    #endif 
     
    next_value(); 
     
    float temp = factor1 * float(get_deviate()); 
     
    if (temp > factor2) 
        return factor2; 
    else 
        return temp; 
} 
 
//-------------------------------------------------- 
// class Random: <double> specialization 
 
double Random<double>::operator () () 
{ 
    static const double factor1 = 1.0 / double(get_M()); 
 
    #ifdef __GNUC__ 
    static const double factor2 = 1.0 - DBL_EPSILON; 
    #else 
    static const double factor2 = 1.0 - numeric_limits<double>::epsilon(); 
    #endif 
     
    next_value(); 
     
    double temp = factor1 * double(get_deviate()); 
     
    if (temp > factor2) 
        return factor2; 
    else 
        return temp; 
} 
 
//-------------------------------------------------- 
// class RandomLEcuyer: <float> specialization 
 
float RandomLEcuyer<float>::operator () () 
{ 
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    static const float factor1 = 1.0F / float(LEcuyer::m_rand1.get_M()); 
 
    #ifdef __GNUC__ 
    static const float factor2 = 1.0F - FLT_EPSILON; 
    #else 
    static const float factor2 = 1.0F - numeric_limits<float>::epsilon(); 
    #endif 
     
    next_value(); 
     
    float temp = factor1 * float(get_deviate()); 
     
    if (temp > factor2) 
        return factor2; 
    else 
        return temp; 
} 
 
//-------------------------------------------------- 
// class RandomLEcuyer: <double> specialization 
 
double RandomLEcuyer<double>::operator () () 
{ 
    static const double factor1 = 1.0 / double(LEcuyer::m_rand1.get_M()); 
 
    #ifdef __GNUC__ 
    static const double factor2 = 1.0 - DBL_EPSILON; 
    #else 
    static const double factor2 = 1.0 - numeric_limits<double>::epsilon(); 
    #endif 
     
    next_value(); 
     
    double temp = factor1 * double(get_deviate()); 
     
    if (temp > factor2) 
        return factor2; 
    else 
        return temp; 
} 

As we increase the complexity of the algorithms, they get slower; thus the MinimalStandard 
is faster than GeneralPurpose, with L’Ecuyer algorithm the slowest of all. The nature of a 
stochastic algorithm determines how “random” our random numbers really need to be; for 
example, a checkers program is likely to work well with GeneralPurpose, while a complex 
genetic algorithm may require the long repetition cycle of LEcuyer. 

Roulette Wheels 
I introduced the concept of roulette wheel selection in Chapter 2. To recap: this technique 

simulates a gambler’s roulette wheel in which the sections represent probabilities that a value 
will be chosen. In the case of genetic algorithms, each segment of the wheel represents the 
reproductive chance for a chromosome as reflected by its fitness. Several of my applications use 
roulette wheels, which is an obvious indicator that a class is in order—or, in this case, a template. 

    //-------------------------------------------------- 
    // RouletteWheel exception type 
    class RouletteException : public GAException 
    { 
    public: 
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        RouletteException() : GAException("Inavlid roulette wheel index") { } 
    }; 
     
    //-------------------------------------------------- 
    // class RouletteWheel: declaration 
    template <class T> class RouletteWheel 
    { 
    public: 
        // creation constructor 
        RouletteWheel(const T * weights, size_t size); 
         
        // copy constructor 
        RouletteWheel(const RouletteWheel<T> & rw); 
         
        // assignment operator 
        void operator = (const RouletteWheel<T> & rw); 
         
        // destructor 
        ~RouletteWheel(); 
         
        // change the weight of an entry 
        T change_weight(size_t i, T weight); 
         
        // interrogation 
        size_t get_size() { return SIZE; } 
        float get_weight(size_t i); 
         
        // retrieve a random index 
        size_t get_index(); 
         
    protected: 
        // number of weights in this wheel 
        size_t m_size; 
 
        // array of m_weights 
        T * m_weights; 
         
        // total weight of all indexes 
        T m_totalWeight; 
         
        // shared random deviate generator 
        Coyote::Random<float> m_devgen; 
         
    private: 
        // internal copy function 
        void copy(const RouletteWheel<T> & rw); 
    }; 

By defining RouletteWheel as a template, I allow it to support fitness values of any numeric 
type, as specified by the argument T. When created, a RouletteWheel must be supplied a pair of 
parameters identifying an array of T fitness values and a number of elements in that array—
stored, respectively, in the allocated array m_weights and the variable m_size . The value 
m_totalweights contains the total of all fitness values in m_weights, and m_devgen is a random 
number generator used to “spin” the wheel. 

The constructor copies and sums the array of fitness values; if the pointer is NULL, the 
constructor creates a new array in which all elements contain an equal weight of one. Note that 
the constructor does not scale the incoming values; it does, however, use the utility function abs  
to convert negative weights to positive values. 
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    // creation constructor 
    template <class T> RouletteWheel<T>::RouletteWheel(const T * weights, 
                                                       size_t size) 
    { 
        size_t i; 
 
        m_size    = size; 
        m_weights = new T[size]; 
        m_totalWeight = T(0); 
         
        if (m_weights == NULL) 
        { 
            for (i = 0; i < size; ++i) 
            { 
                m_weights[i]   = T(1); 
                m_totalWeight += T(1); 
            } 
        } 
        else 
        { 
            for (i = 0; i < size; ++i) 
            { 
                m_weights[i]   = abs(weights[i]); 
                m_totalWeight += abs(weights[i]); 
            } 
        } 
    } 

In general, you’ll want to ensure that your weights array contains only positive values, and 
that the sum of all weights is greater than zero. 

The destructor simply frees memory allocated to the array of weights. 

    // destructor 
    template <class T> RouletteWheel<T>::~RouletteWheel() 
    { 
        delete [] m_weights; 
    } 

I’ve defined the copy constructor and assignment operator as inline functions containing calls 
to the utility function copy. 

    template <class T> void RouletteWheel<T>::copy(const RouletteWheel<T> & rw) 
    { 
        m_size    = rw.m_size; 
        m_weights = new T[m_size]; 
 
        m_totalWeight = rw.m_totalWeight; 
 
        memcpy(m_weights,rw.m_weights,sizeof(T) * m_size); 
    } 
     
    // copy constructor 
    template <class T> inline RouletteWheel<T>::RouletteWheel 
                                  (const RouletteWheel<T> & rw) 
    { 
        copy(rw); 
    } 
     
    // assignment operator 
    template <class T> inline void RouletteWheel<T>::operator = 
                                      (const RouletteWheel<T> & rw) 
    { 
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        copy(rw); 
    } 

The change_weight method alters a single weight at a given index within the wheel. This 
allows dynamic changes to the table. 

    template <class T> T RouletteWheel<T>::change_weight(size_t i, T weight) 
    { 
        if (i >= m_size) 
            throw RouletteException(); 
         
        m_totalWeight -= m_weights[i]; 
        m_totalWeight += weight; 
         
        T res = m_weights[i]; 
        m_weights[i] = weight; 
 
        return res; 
    } 

The interrogation method get_weight returns the weight values for a specified index. 

    // interrogator 
    template <class T> inline float RouletteWheel<T>::get_weight(size_t i) 
    { 
        return (i < m_size) ? m_weights[i] : T(-1); 
    } 

The get_index method returns a randomly-selected index based on the current weights in 
m_weights. 

    template <class T> size_t RouletteWheel<T>::get_index() 
    { 
        T choice = T(m_devgen() * m_totalWeight); 
        size_t i = 0; 
         
        while ((i < m_size) && (choice > m_weights[i])) 
        { 
            choice -= m_weights[i]; 
            ++i; 
        } 
         
        return i; 
    } 

Floating-Point Reproduction 
The majority of genetic algorithms work on pure bit strings, converting those strings to the 

desired types for fitness testing. In Lawrence Davis’ book Handbook of Genetic Algorithms, he 
transforms a 44-bit string into two floating point values via a series of operations. I’ve seen 
similar techniques elsewhere, and I find them a bit cumbersome. 

In theory, a GA should have no knowledge of the format of the data it is modifying; however, 
natural chromosomes do encode some structure in their sequence. Crossover appears to take 
place in specific positions along the chromosome. And while mutation doesn’t care about the 
chromosome’s structure, but its does affect that structure. In context of a computer program, the 
structure of a chromosome isn’t so important as the ability to logically modify its bits through 
crossover and mutation. 
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I decided to build tools for the mutation and crossover of encoded floating-point values of 
types float and double. The code that follows assumes we are working with 32-bit floats and 64-
bit IEEE doubles, which, in my experience, the norm in Intel-based C and C++ compilers. 

Data Types 
Floating-point numbers contain scaled values that may have a fractional part. The float and 

double types implement the single-precision and double-precision floating-point formats 
defined by the Institute of Electrical and Electronic Engineers (IEEE) standard 754-1985. A float 
is a 32-bit value, and a double is a 64-bit. These bits in a floating-point value are divided into 
three components: A sign bit, an exponent, and a mantissa. Figure 3-1 shows the internal format 
of the float and double types. s indicates the sign bit; exp is an abbreviation for exponent. 

 
 31 30   23 22          0  

float     
 s exp mantissa  
     
 63 62   52 51 0 
double     
 s exp mantissa  

Figure 3-1  Format of IEEE float and double 
 
The highest-order bit in a floating-point value is the sign bit. If the sign bit is one, the value is 

negative; if the sign bit is zero, the value is positive. In a float, the exponent occupies 8 bits and 
the mantissa uses the remaining 23 bits. A double has a 52-bit mantissa and an 11-bit exponent. 
In addition, the mantissa of float and double values has an implicit high-order bit of 1. 

The mantissa holds a binary fraction greater than or equal to 1 (because of the implied high bit 
being one) and less than 2. The number of bits in the mantissa affects the accuracy of the 
floating-point value. A float has 6 decimal digits of accuracy, and a double (with its longer 
mantissa) is accurate to 15 decimal digits. Since the mantissa is a binary fraction, and it can’t 
always exactly reflect a decimal value you’ve tried to store in it. For example, there is no binary 
fraction that can exactly represent the values 0.6 or 1/3. Floating-point numbers represent an 
approximation of a decimal value; this is where rounding errors come from. 

The exponent is a binary number representing the number of binary digits the mantissa is 
shifted left (for a positive actual exponent) or right (for a negative actual exponent). The 
exponent is a biased value; you calculate the actual exponent value by subtracting a bias value 
from the exponent stored in the value. The bias for a float is 127; the bias for a double is 1023. 
Thus, a float value with an exponent of 150 would represent a number with an exponent of 23. 
The constants FLT_MIN, FLT_MAX, DBL_MIN, and DBL_MAX define the minimum and 
maximum values for floating point numbers, in the Standard C header file float.h. Most C++ 
compilers define those constants as 

#define FLT_MIN  1.17549e-38 
#define FLT_MAX  3.40282e+38 
 
#define DBL_MIN  2.22507385850720e-308 
#define DBL_MAX  1.79769313486232e+308 
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Two other relevant float.h constants are FLT_EPSILON and DBL_EPSILON, which 
represent the smallest possible difference between two float and double values. 

#define FLT_EPSILON  1.19209e-07 
#define DBL_EPSILON  2.22044604925031e-16 

In Standard C++, the numeric_limits template (defined in the <limits> header) is specialized 
to describe the characteristics of each numeric data type. For the purposes at hand, the relevant 
members of numeric_limits are  

Bestiary 
Floating-point numbers can take on some unusual values. It's possible for a floating-point 

number to represent positive and negative infinity, for example. Or, a floating-point value may 
be in a special format that doesn't represent a valid number. Any routines that randomly change 
floating-point numbers must avoid generating these unusual values. 

A floating-point value represents infinity when the bits in the exponent are all one and the bits 
in the mantissa are all zero. When both the mantissa and exponent are zero, the floating-point 
number is zero. Infinity, as well as zero, can have a sign. Positive and negative zero operate 
identically in calculations and comparisons. 

When is a number not a number? When its exponent is all ones and its mantissa contains any 
set of bits that is not all zeros (which would indicate an infinity). A value in this format is known 
as a NaN (Not a Number). The sign bit for a NaN is irrelevant. 

So what is the point of knowing these strange floating-point values? For the most part, C++ 
compilers do not support the use and processing of unusual floating-point values. To maximize 
portability, we want to do is avoid the creation of unusual numbers through floating-point 
reproduction. And in looking at the above, we can see an obvious commonality between the 
troublesome NaNs and infinities:  both types have exponents filled with ones. 

Mutation in Parts 
A floating-point value contains three components that can be changed during mutation and 

crossover: the sign bit, exponent, and mantissa. Changing the exponent and sign have the most 
dramatic affect on a floating-point value, since the change of one bit can dramatically alter the 
magnitude of a number. Assuming that all bits have an equal chance of mutation, we get the 
following probabilities that a random bit change will affect a specific component: 

 
 float  double 
sign bit 3.1%  1.6% 
exponent 25.0%  17.1% 
mantissa 71.9%  81.3% 

 
Depending on the application, I’ve found that those fixed percentages don’t always allow for 

the creation of effective mutations. The exponent, in particular, is so likely to be changed that 
numbers often fluctuate wildly within a population after mutation. I decided to create a system 
for the roulette-wheel selection of the component to be mutated, allowing me to weight mutation 
in favor of changing the mantissa. 
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I create a class named FloatBreeder, which defines the parameters of mutation and crossover 
for float and double types. 

    class FloatBreeder 
    { 
    public: 
        FloatBreeder(float sweight = 5.0F, 
                     float eweight = 5.0F, 
                     float mweight = 90.0F); 
 
        float  mutate(float  f); 
        double mutate(double d); 
 
        float  crossover(float  f1, float  f2); 
        double crossover(double d1, double d2); 
 
    protected: 
        const float m_total_weight; 
        const float m_sign_weight; 
        const float m_exp_weight; 
 
        static Coyote::Random<float> m_devgen; 
    }; 

When creating a FloatBreeder object, you’ll need to supply three floating-point values 
representing the relative chances of changing the parts of a floating-point number. 

FloatBreeder::FloatBreeder(float sweight, float eweight, float mweight) 
    : m_total_weight(sweight + eweight + mweight), 
      m_sign_weight(sweight), 
      m_exp_weight(eweight) 
{ 
    // intentionally blank 
} 

The mutate functions use those values in selecting the sections of float and double values to 
be mutated. 

float FloatBreeder::mutate(float f) 
{ 
    // mask for exponent bits 
    static const long FExpt = 0x7F800000L; 
     
    long x, n, mask; 
     
    // choose section to mutate 
    float mpick = m_devgen() * m_total_weight; 
     
    // copy float to long for manipulation 
    memcpy(&x,&f,sizeof(long)); 
     
    // if all exponent bits on (invalid #), return original 
    if ((x & FExpt) == FExpt) 
        return f; 
     
    // mutate 
    if (mpick < m_sign_weight) 
    { 
        // flip sign 
        mask = 0x80000000L; 
         
        if (x & mask) 
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            x &= ~mask; 
        else 
            x |= mask; 
    } 
    else 
    { 
        mpick -= m_sign_weight; 
         
        if (mpick < m_exp_weight) 
        { 
            // mutate exponent while number is valid 
            do  { 
                n    = x; 
                mask = 0x00800000L << int(m_devgen() * 8.0F); 
                 
                if (n & mask) 
                    n &= ~mask; 
                else 
                    n |= mask; 
            } 
            while ((n & FExpt) == FExpt); 
             
            x = n; 
        } 
        else 
        { 
            // flip bit in mantissa 
            mask = 1L << int(m_devgen() * 23.0F); 
             
            if (x & mask) 
                x &= ~mask; 
            else 
                x |= mask; 
        } 
    } 
     
    // done! 
    float res; 
    memcpy(&res,&x,sizeof(float)); 
    return res; 
} 
 
double FloatBreeder::mutate(double d) 
{ 
    // mask for exponent bits 
    static const long DExpt = 0x7FF00000UL; 
     
    long x[2], n, mask, bit; 
     
    // choose section to mutate 
    double mpick = m_devgen() * m_total_weight; 
     
    // copy double to pair of longs for manipulation 
    memcpy(x,&d,2 * sizeof(long)); 
     
    if (mpick < m_sign_weight) 
    { 
        // flip sign 
        mask = 0x80000000L; 
         
        if (x[1] & mask) 
            x[1] &= ~mask; 
        else 
            x[1] |= mask; 
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    } 
    else 
    { 
        mpick -= m_sign_weight; 
         
        if (mpick < m_exp_weight) 
        { 
            // mutate exponent while number is valid 
            do  { 
                n = x[1]; 
                mask = 0x00100000L << int(m_devgen() * 11.0F); 
                 
                if (n & mask) 
                    n &= ~mask; 
                else 
                    n |= mask; 
            } 
            while ((n & DExpt) == DExpt); 
             
            x[1] = n; 
        } 
        else 
        { 
            bit = long(m_devgen() * 52.0F); 
             
            if (bit > 31L) 
            { 
                bit -= 32L; 
                mask = 1L << (int)bit; 
                 
                if (x[1] & mask) 
                    x[1] &= ~mask; 
                else 
                    x[1] |= mask; 
            } 
            else 
            { 
                // flip bit in mantissa 
                mask = 1L << (int)bit; 
                 
                if (x[0] & mask) 
                    x[0] &= ~mask; 
                else 
                    x[0] |= mask; 
            } 
        } 
    } 
     
    // done 
    double res; 
    memcpy(&res,x,sizeof(double)); 
    return res; 
} 

 
The Mutate functions use a bitmask to examine the bits in a value’s exponent, ensuring that 

that any output value is not a NaN or infinity. 
My experiments advise me to limit the mutability of the exponent to under 15 percent, 

keeping the sign bit mutation rate at about two or three percent. You don’t have to take my word 
for it; the next chapter implements a genetic algorithm for which you can set the weights for each 
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component of floating-point values. That allows you to test my results and explore your own 
ideas. 

Crossover 
Floating-point crossover is a simple operation, implemented as two member functions named 

crossover: 

float FloatBreeder::crossover(float f1, float f2) 
{ 
    // mask for exponent bits 
    static const long FExpt = 0x7F800000L; 
     
    long  l1, l2, lcross, mask; 
    float fcross; 
     
    // store values in longs 
    memcpy(&l1,&f1,sizeof(long)); 
    memcpy(&l2,&f2,sizeof(long)); 
     
    do  { 
        // create mask 
        mask   = 0xFFFFFFFFL << size_t(m_devgen() * 32.0F); 
         
        // generate offspring 
        lcross = (l1 & mask) | (l2 & (~mask)); 
    } 
    while ((lcross & FExpt) == FExpt); 
     
    // copy result to float and return 
    memcpy(&fcross,&lcross,sizeof(float)); 
     
    return fcross; 
} 
 
double FloatBreeder::crossover(double d1, double d2) 
{ 
    // mask for exponent bits 
    static const long DExpt = 0x7FF00000L; 
     
    long   l1[2], l2[2], lcross[2], mask, bit; 
    double fcross; 
     
    // store values in longs 
    memcpy(l1,&d1,sizeof(double)); 
    memcpy(l2,&d2,sizeof(double)); 
     
    do  { 
        // calculate bit position for flip 
        bit = size_t(m_devgen() * 64.0F); 
         
        if (bit > 31) // if flip in high-order word 
        { 
            // create mask 
            mask   = 0xFFFFFFFFL << int(bit - 32L); 
             
            // duplicate low-order word of first parent 
            lcross[0] = l1[0]; 
             
            // crossover in high-order word 
            lcross[1] = (l1[1] & mask) | (l2[1] & (~mask)); 
        } 
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        else 
        { 
            // create mask 
            mask   = 0xFFFFFFFFL << int(bit); 
             
            // crossover in low-order word 
            lcross[0] = (l1[0] & mask) | (l2[0] & (~mask)); 
             
            // duplicate high-order word of first parent 
            lcross[1] = l1[1]; 
        } 
    } 
    while ((lcross[1] & DExpt) == DExpt); 
     
    // copy and return 
    memcpy(&fcross,lcross,sizeof(double)); 
    return fcross; 
} 

Why no long double? 
What follows is an editorial comment; you can skip it if you like. 
I didn’t implement the mutation and crossover operations for long doubles because I don’t 

use that type in my programs. On a PC, the 80-bit long double type represents the internal 
floating-point format used by the numeric coprocessor. A long double has 18 digits of accuracy; 
it is used internally by the math coprocessor so that the results of calculations can be rounded to 
produce a very accurate 15 digits of precision in a double. The extra three digits in a long 
double provide improved accuracy; they should be viewed very suspiciously by a numerical 
programmer since the coprocessor never means for them to be considered or used. 

In my view, current implementations of long double are nothing more than frivolous attempts 
at adding bullets to the compiler advertisement. I’d be far happier if C and C++ compiler vendors 
would implement a full suite of functions for manipulating float values, as required by Standard 
C++ and the forthcoming C9X. Double precision values already exceed the accuracy needs of 
most scientific and engineering tasks; for most calculations, float is quite adequate. 

And for those folks who wonder why some of programmers—including myself—stick with 
dusty old FORTRAN: It’s because FORTRAN is still the only language that provides full 
intrinsic support for single and double precision floating-point and complex numbers. 

Onward 
Okay, enough grousing! The tools above are components of the designs in subsequent 

chapters, where I implement complex genetic algorithms. In Chapter 4, I’ll implement an 
experimental environment for testing the efficacy of advanced genetic algorithms in solving 
complex problems. 


