
 © 1996, 2000 by Scott Robert Ladd (scott@coyotegulch.com)
 Published by Coyote Gulch Productions on 29 November, 1999
 Licensing and Open Source Agreements posted at http://www.coyotegulch.com

3
Tools for Software Evolution

Men are only as good as their technical development allows
them to be.—George Orwell, Inside the Whale

Games, statistical tests, and genetic algorithms all rely on random numbers. Unfortunately, the
built-in rand function is entirely inadequate in circumstances where thousands—or even
millions—of random values need to be generated. A run of the algorithm from Chapter 2 may
use a hundred thousand or more random values. If the random number “generator” produces
repetitive or cyclical values, the algorithm is unlikely to produce satisfactory results.

Random Numbers
A random number is just that: a number whose value cannot be predicted in advance of its

existence. While the human mind has been known to be unpredictable, it isn't very good at
generating a completely unrelated set of numbers. Try creating a list of twenty random integers
selected from the range one through one hundred, inclusive. Are you sure that your numbers are
really random, and not simply fragments of old telephone numbers or checkbook balances? And
wouldn't it be tedious if you had to generate a thousand, or a million random numbers?

Computers are supposed to be good at reducing tedious numeric operations. Unfortunately,
computers perform calculations via algorithms, and truly random numbers cannot be generated
by an algorithm. By definition, an algorithm is a specific sequence of operations that produces a
predictable output for a given set of parameters. In the case of random numbers, the last thing we
want is something predictable! The best we can do with a computer is create an algorithm that
appears to generate a random sequence of numbers. The numbers aren't really random—a human
with a sharp mind or a calculator could predict the numbers in the sequence by following the
algorithm. But the sequence of numbers is very difficult to follow, and a human looking at the
values will not be able to see any algorithmic pattern to them. For practical applications, pseudo-
random numbers suffice.

What we are striving for is something mathematicians call a uniform deviate: a sequence such
that every number in a given range has an equal chance of being produced.

“Randomizing” Algorithms
In general, a pseudo-random number generator is initialized with a seed value that begins the

sequence. A set of mathematical operations is performed on the seed, generating a value that is
reported as a pseudo-random number. That return value is then used as the next seed value.
Researchers have devoted copious time to inventing and analyzing pseudo-random number
generators. The goal of this research has been to produce the most unpredictable sequence of
values. Designing a good random number generator involves solving two problems:

2 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

• Increasing the size of the repetition cycle. As the algorithm is applied, the seed will
eventually return to its starting value, and the values start repeating themselves. An
algorithm that repeats after generating a million numbers is more useful than a
generator that repeats itself after only a hundred values.

• Avoiding predictability. A random number generator that always returns values with
the same last digit is worthless. In general, any patterns in the output render a
generator useless for stochastic computing.

While many fancy and complicated algorithms can generate pseudo-random numbers, the
most commonly-used algorithm is also one of the simplest. First introduced by D. Lehmer in
1951, the linear congruential method involves only two mathematical operations. The formula
is:

)(mod1 mcaNN ii +=+

N is your “random” number, and each successive value (known as a seed) is based on the
previous one. Each selection of a, c, and m produces a sequence of values that will eventually
cycle back to the starting value of N. The equation’s factors determine the “randomness” of
values and the number of iterations that can be performed before numbers start to repeat. The
maximum repetition period is m, but not every combination of a, c, and m will produce a
maximal period—and most factor sets produce useless sequences. For example, if a=1, c = 1, and
m = 1, the algorithm will simply count by ones!

Standard C uses the following linear congruential generator in implementing the rand and
srand functions:

static unsigned long next = 1;

int rand(void)
{
 next = next * 1103515245 + 12345;
 return ((unsigned int) (next / 65536UL) % 0x32767UL);
}

void srand(unsigned int seed)
{
 next = seed;
}

The Standard C algorithm is a slight elaboration on the basic linear congruential algorithm, in
that it uses a long for the seed, but returns only an int. The code above assumes 32-bit longs and
16-bit ints.

So why not use rand? Because the algorithm is inadequate for many applications. And what’s
wrong with a linear congruential random number generator? Nothing, so long as your random
numbers don’t need to be very unpredictable and the repetition of those values is not important to
your work. The output of rand is limited, providing values that only lie between 0 and 32,767,
inclusive. In other words, the Standard C generator will produce only a few thousand values
before repeating itself—a fatal problem for genetic algorithms that rely on vast quantities of
random values. Aside from their numerical limitations, rand and srand have several faults from
a software engineering standpoint:

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 3

• A program must explicitly call srand to initialize the seed. If srand isn't called, the
default value of seed will be used, and every execution of the program will generate
the same sequence of pseudo-random numbers.

• Since srand and rand are two separate functions, seed is defined as a global
variable. Good programmers avoid global variables, even when those that can be
hidden using the static keyword.

• Since there is only one seed value, only one sequence of pseudo-random numbers is
generated in a program. Often, I like to have separate random number generators for
different parts of a program.

• The ANSI rand function returns values between 0 and UINT_MAX. In most cases,
I want to retrieve random values that are within a specific range, say from 1 to 100,
or between 0.0 and 1.0.

• I might want to obtain random numbers that aren’t longs. A templatized class could
provide the flexibility to generate random values for any type.

Other problems exist with the Standard rand. Producing a random floating-point value
requires a program to divide the result of rand by the constant RAND_MAX (as I did in Chapter
2). Even worse, some mathematically-inept compiler vendors try to improve on rand, using cute
little byte-swapping tricks that only reduce the period of repetition! Statistically, even the best
linear congruential generators suffer from convergence in their numeric sequences, and the ANSI
generator is not the theoretical best.

A Minimal Standard
A theoretical best does exist, as the result of research by S. K. Park and K. W. Miller. For the

multiplicative algorithm to be effective, a and m can only take on a very few values; m most
certainly must be prime, for example. Park & Miller identified the values a = 16807, m =
2147483647, and c = 0 as producing the most statistically-random values for 32-bit signed
(usually long) integers.

Note: For producing 16-bit values, a good pair of numbers is a = 171, m = 30269, c = 0.
Park & Miller also suggested other acceptable values for a in 32-bit algorithms: 42871 and
69621.

One more topic to cover: overflow in multiplication. Obviously, if N is large enough,
multiplying by another large value will exceed the maximum value of a long, causing an
arithmetic overflow before the modulus by m. To prevent overflow, we can use an approximate
factorization of m, based on the formula known as Schrage’s Method:

raqmamramq +=== ,mod;/

Foundation for a Hierarchy
I began with an abstract base class, Generator, defined in the namespace

Coyote::UniformDeviate. The nested namespace keeps the “internal” uniform deviate
identifiers from conflicting with any other names I’ve declared in my general Coyote
namespace. Generator declares the attributes of any “random number generator”, regardless of
algorithm.

4 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

namespace Coyote
{
 namespace UniformDeviate
 {
 //--
 // class Generator - declaration
 class Generator
 {
 protected:
 // sets default seed argument from system time
 static long set_seed_from_time()
 {
 return (long)time(NULL);
 }

 public:
 // constructor
 Generator(long initSeed = set_seed_from_time());

 // destructor
 virtual ~Generator();

 // set seed value
 virtual void set_seed(long newSeed = set_seed_from_time());

 // get the current "random" value
 virtual long get_deviate();

 // calculate next seed value
 virtual void next_value() = 0;

 protected:
 long m_seed; // the seed for generator 1
 };

 inline void UniformDeviate::Generator::set_seed(long initSeed)
 {
 m_seed = initSeed;
 }

 // get the current "random" value
 inline long UniformDeviate::Generator::get_deviate()
 {
 return m_seed;
 }
 }
}

The private set_seed_from_time method automatically initializes the constructor’s seed
parameter with the current system time. You can, of course, supply a specific seed when
constructing a Generator object; any time the generator is run with a specific seed, it will return
the same sequence of values, a useful technique when you require reproducible results (as in, for
example, a scientific paper).

I defined the Generator constructor and destructor in an implementation file. In general,
constructors and destructor should not be defined as inline functions in a header; compilers
automatically generate calls to these functions under many circumstances, and code can quickly
bloat if every instance of creation is inline.

// constructor
UniformDeviate::Generator::Generator(long initSeed)

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 5

{
 set_seed(initSeed);
}

// destructor
UniformDeviate::Generator::~Generator()
{
 // does nothing in this base class
}

My basic implementation of Generator is MinimalStandard, a template class with
arguments that define values for a and m. By default, I use the Park-Miller numbers, but later in
the chapter, I’ll be building better algorithms by combining MinimalStandard objects with
different a and m values. The compiler will interpret these parameter values as manifest
constants, allowing a good compiler to generate efficient code for next_value .

namespace Coyote
{
 namespace UniformDeviate
 {
 //--
 // class MinimalStandard - declaration
 template <long A = 16807L, long M = LONG_MAX>
 class MinimalStandard : public Generator
 {
 public:
 // constructor
 MinimalStandard(long initSeed = set_seed_from_time());

 // destructor
 virtual ~MinimalStandard();

 // calculate next seed value
 virtual void next_value();

 // interrogators
 long get_M() { return M; }
 long get_A() { return A; }

 protected:
 const long Q; // quotient (used in Schrage's method)
 const long R; // remainder (used in Schrage's method)
 };

 //--
 // class MinimalStandard - definition

 // constructor
 template <long A, long M>
 MinimalStandard<A,M>::MinimalStandard(long initSeed)
 : Generator(initSeed), Q(M/A), R(M%A)
 {
 // nothing here
 }

 // destructor
 template <long A, long M>
 MinimalStandard<A,M>::~MinimalStandard()
 {
 // nothing here, either
 }

6 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 // move to next seed
 template <long A, long M>
 void MinimalStandard<A,M>::next_value()
 {
 // compute seed = (a * seed) % m, using Schrage's method
 long k = m_seed / Q;

 m_seed = A * (m_seed - k * Q) - R * k;

 if (m_seed < 0)
 m_seed += M;
 }
 }
}

The MinimalStandard class is only the beginning; it provides a base from which we can
build even more sophisticated algorithms.

Better than Minimal
One problem with the Minimal Standard is that it can suffer from sequences of repetitive

bytes or values. For example, certain large values may always be followed by very small values.
Such problems can be avoided by using the generator to randomize itself. The best-known
technique is called a shuffle: Create an small array, load it with the first few generated values,
then use subsequent invocations of the algorithm to generate an random index into that array;
return the indexed value, and replace it in the array with the another random value. Yes, I know
it sounds complicated—but really, all we’re doing is mixing up the generated values so that they
don’t appear in the usual sequence, thus avoiding any correlations or predictable sequences.

Adding a shuffle to MinimalStandard is easy; I derived a new template class,
GeneralPurpose, the includes the shuffle while using the algorithmic code it inherits.

 //--
 // class GeneralPurpose - declaration
 template <long A = 16807L, long M = LONG_MAX>
 class GeneralPurpose : public MinimalStandard<A,M>
 {
 public:
 // constructor
 GeneralPurpose(long initSeed = set_seed_from_time());

 // destructor
 virtual ~GeneralPurpose();

 // set seed value
 virtual void set_seed(long newSeed = set_seed_from_time());

 // get the current "random" value
 virtual long get_deviate();

 // calculate next seed value
 virtual void next_value();

 protected:
 // set seed value
 void init_table(long seed);

 // table factors
 const long TABLE_SIZE; // size of the table
 const long TABLE_DIV; // ratio of M / TABLE_SIZE

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 7

 // shuffle table and values used therein
 long * m_table;
 long m_shuffle;
 };

 //--
 // class GeneralPurpose - definition

 // constructor
 template <long A, long M>
 GeneralPurpose<A,M>::GeneralPurpose(long initSeed)
 : MinimalStandard<A,M>(initSeed),
 TABLE_SIZE(32L),
 TABLE_DIV(1L + (M - 1L) / TABLE_SIZE)
 {
 m_table = new long[TABLE_SIZE];
 init_table(initSeed);
 }

 // destructor
 template <long A,long M> GeneralPurpose<A,M>::~GeneralPurpose()
 {
 delete [] m_table;
 }

 // set seed value
 template <long A, long M>
 inline void GeneralPurpose<A,M>::set_seed(long newSeed)
 {
 init_table(newSeed);
 }

 template <long A, long M>
 void GeneralPurpose<A,M>::init_table(long seed)
 {
 m_seed = seed;
 m_shuffle = 0;

 // avoid zero or negative seed!
 if (m_seed <= 0)
 m_seed = 299792458L;

 // initialize the table by getting the first few deviates
 for (int i = TABLE_SIZE + 7; i >= 0; --i)
 {
 // get next value in sequence
 MinimalStandard<A,M>::next_value();

 // store it in a table entry
 if (i < TABLE_SIZE)
 m_table[i] = m_seed;
 }

 // select our shuffled-out value
 m_shuffle = m_table[0];
 }

 // get the current "random" value
 template <long A, long M>
 inline long GeneralPurpose<A,M>::get_deviate()
 {
 return m_shuffle;
 }

8 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 // move to next seed
 template <long A,long M> void GeneralPurpose<A,M>::next_value()
 {
 // get next value in sequence
 MinimalStandard<A,M>::next_value();

 // shuffle out table value; save current seed in its place
 size_t i = m_shuffle / TABLE_DIV;

 m_shuffle = m_table[i];
 m_table[i] = m_seed;
 }

The Best of the Best
Even the Minimal Standard can show weaknesses when generating millions of values. In a

1988 issue of Communications of the ACM, Paul L’Ecuyer suggested a variety of algorithms for
the production of reliable, long-period random deviates. By combining two generators based on
the Minimal Standard, L’Ecuyer creates a routine that avoids the pitfalls of simpler algorithms.
The generator, which I’ve used below in my Random class template, produces uniform random
deviates between 0.0 and 1.0.

In a nutshell, L’Ecuyer’s algorithm uses an approximate factorization, “shuffling” each result
to remove correlation in low-order bits. A single generator of that type will have a repetition
period of about 108—which, believe it or not, may not be adequate for some very complex
genetic algorithms. Running a thousand generations for a population of a hundred chromosomes
may require millions of random values. Combining two such generators with a judicious
selection of factors the period to approximately 2.3 × 1018, which should be more than effective
in genetic algorithms of any practical scope. The LEcuyer class is not a template, but rather a
regular class based on instantiations of the GeneralPurpose and MinimalStandard template
classes.

 //--
 // class LEcuyer - declaration
 class LEcuyer : public Generator
 {
 public:
 // constructor
 LEcuyer(long initSeed = set_seed_from_time());

 // destructor
 virtual ~LEcuyer();

 // set seed value
 virtual void set_seed(long newSeed = set_seed_from_time());

 // get the current "random" value
 virtual long get_deviate();

 // calculate next seed value
 virtual void next_value();

 protected:
 // internal generators
 GeneralPurpose <40014L,2147483563L> m_rand1;
 MinimalStandard<40692L,2147483399L> m_rand2;
 };

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 9

 // get the current "random" value
 inline long LEcuyer::get_deviate()
 {
 return m_seed;
 }

 } // end namespace UniformDeviate

//--
// class LEcuyer - definition

// constructor
LEcuyer::LEcuyer(long initSeed)
 : m_rand1(initSeed), m_rand2(initSeed)
{
 m_seed = m_rand1.get_deviate();
}

// destructor
LEcuyer::~LEcuyer()
{
 // nothing here
}

// set seed value
void LEcuyer::set_seed(long newSeed)
{
 m_rand1.set_seed(newSeed);
 m_rand2.set_seed(newSeed);
 m_seed = m_rand1.get_deviate();
}

// move to next seed
void LEcuyer::next_value()
{
 // get next value in sequence
 m_rand1.next_value();
 m_rand2.next_value();

 // combined values
 m_seed = m_rand1.get_deviate() - m_rand2.get_deviate();

 if (m_seed < 0)
 m_seed += (m_rand1.get_M() - 1);
}

Random Templates
The aforementioned classes provide the algorithmic machinery for random number

generation, and are all defined in the Coyote::UniformDeviate namespace. To define practical
random number generators, I created a pair of very simple templates, Random (based on
GeneralPurpose) and RandomLEcuyer (a derivative of LEcuyer). These templates specialize
on a type that is to be randomized. I’ve created specializations for common types like int, size_t,
float, and double.

 //--
 // class Random - declaration
 template <typename T> class Random
 : private UniformDeviate::GeneralPurpose<>
 {

10 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 public:
 // constructor
 Random(long initSeed = set_seed_from_time());

 // get value
 T operator () ();
 T operator () (T limit); // range 0 to < max
 T operator () (T min, T max); // range min to max
 };

 //--
 // class Random - definition
 template <typename T> Random<T>::Random(long initSeed)
 : UniformDeviate::GeneralPurpose<>(initSeed)
 {
 // nothing else to do
 }

 //--
 // class Random: <float> specialization

 float Random<float>::operator () ();

 template <> inline float Random<float>::operator () (float limit)
 {
 return limit * Random<float>::operator ()();
 }

 template <> inline float Random<float>::operator () (float min,
 float max)
 {
 return min + (max - min) * Random<float>::operator ()();
 }

 //--
 // class Random: <double> specialization

 double Random<double>::operator () ();

 template <> inline double Random<double>::operator ()
 (double limit)
 {
 return limit * Random<double>::operator ()();
 }

 template <> inline double Random<double>::operator () (double min,
 double max)
 {
 return min + (max - min) * Random<double>::operator ()();
 }

 //--
 // class Random: <int> specialization

 template <> inline int Random<int>::operator () ()
 {
 next_value();
 return int(get_deviate());
 }

 template <> inline int Random<int>::operator () (int limit)
 {
 next_value();
 return int((get_deviate()) % long(limit));

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 11

 }

 template <> inline int Random<int>::operator () (int min, int max)
 {
 next_value();
 return min + Random<int>::operator ()(max - min + 1);
 }

 //--
 // class Random: <size_t> specialization

 template <> inline size_t Random<size_t>::operator () ()
 {
 next_value();
 return size_t(get_deviate());
 }

 template <> inline size_t Random<size_t>::operator ()
 (size_t limit)
 {
 next_value();
 return size_t((get_deviate()) % long(limit));
 }

 template <> inline size_t Random<size_t>::operator () (size_t min,
 size_t max)
 {
 next_value();
 return min + Random<size_t>::operator ()(max - min + 1);
 }

 //--
 // class RandomLEcuyer - declaration
 template <typename T> class RandomLEcuyer
 : private UniformDeviate::LEcuyer
 {
 public:
 // constructor
 RandomLEcuyer(long initSeed = set_seed_from_time());

 // get value
 T operator () ();
 T operator () (T limit); // range 0 to < max
 T operator () (T min, T max); // range min to max
 };

 //--
 // class RandomLEcuyer - definition
 template <typename T> RandomLEcuyer<T>::RandomLEcuyer
 (long initSeed)
 : UniformDeviate::LEcuyer(initSeed)
 {
 // nothing else to do
 }

 //--
 // class RandomLEcuyer: <float> specialization

 float RandomLEcuyer<float>::operator () ();

 template <> inline float RandomLEcuyer<float>::operator ()
 (float limit)
 {
 return limit * RandomLEcuyer<float>::operator ()();

12 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 }

 template <> inline float RandomLEcuyer<float>::operator ()
 (float min, float max)
 {
 return min + (max - min) * RandomLEcuyer<float>::operator ()();
 }

 //--
 // class RandomLEcuyer: <double> specialization

 double RandomLEcuyer<double>::operator () ();

 template <> inline double RandomLEcuyer<double>::operator ()
 (double limit)
 {
 return limit * RandomLEcuyer<double>::operator ()();
 }

 template <> inline double RandomLEcuyer<double>::operator ()
 (double min, double max)
 {
 return min + (max-min) * RandomLEcuyer<double>::operator ()();
 }

 //--
 // class RandomLEcuyer: <int> specialization

 template <> inline int RandomLEcuyer<int>::operator () ()
 {
 next_value();
 return int(get_deviate());
 }

 template <> inline int RandomLEcuyer<int>::operator () (int limit)
 {
 next_value();
 return int((get_deviate()) % long(limit));
 }

 template <> inline int RandomLEcuyer<int>::operator ()
 (int min, int max)
 {
 next_value();
 return min + RandomLEcuyer<int>::operator ()(max - min + 1);
 }

 //--
 // class RandomLEcuyer: <size_t> specialization

 template <> inline size_t RandomLEcuyer<size_t>::operator () ()
 {
 next_value();
 return size_t(get_deviate());
 }

 template <> inline size_t RandomLEcuyer<size_t>::operator ()
 (size_t limit)
 {
 next_value();
 return size_t((get_deviate()) % long(limit));
 }

 template <> inline size_t RandomLEcuyer<size_t>::operator ()

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 13

 (size_t min, size_t max)
 {
 next_value();
 return min + RandomLEcuyer<size_t>::operator ()(max - min + 1);
 }

} // end namespace Coyote

The double and float specializations were too complicated to be implemented entirely in a
header file. Note the conditional compilation statements that handle GNU C++’s lack of full
support for the Standard C++ numeric_limits header.

//--
// class Random: <float> specialization

float Random<float>::operator () ()
{
 static const float factor1 = 1.0F / float(get_M());

 #ifdef __GNUC__
 static const float factor2 = 1.0F - FLT_EPSILON;
 #else
 static const float factor2 = 1.0F - numeric_limits<float>::epsilon();
 #endif

 next_value();

 float temp = factor1 * float(get_deviate());

 if (temp > factor2)
 return factor2;
 else
 return temp;
}

//--
// class Random: <double> specialization

double Random<double>::operator () ()
{
 static const double factor1 = 1.0 / double(get_M());

 #ifdef __GNUC__
 static const double factor2 = 1.0 - DBL_EPSILON;
 #else
 static const double factor2 = 1.0 - numeric_limits<double>::epsilon();
 #endif

 next_value();

 double temp = factor1 * double(get_deviate());

 if (temp > factor2)
 return factor2;
 else
 return temp;
}

//--
// class RandomLEcuyer: <float> specialization

float RandomLEcuyer<float>::operator () ()
{

14 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 static const float factor1 = 1.0F / float(LEcuyer::m_rand1.get_M());

 #ifdef __GNUC__
 static const float factor2 = 1.0F - FLT_EPSILON;
 #else
 static const float factor2 = 1.0F - numeric_limits<float>::epsilon();
 #endif

 next_value();

 float temp = factor1 * float(get_deviate());

 if (temp > factor2)
 return factor2;
 else
 return temp;
}

//--
// class RandomLEcuyer: <double> specialization

double RandomLEcuyer<double>::operator () ()
{
 static const double factor1 = 1.0 / double(LEcuyer::m_rand1.get_M());

 #ifdef __GNUC__
 static const double factor2 = 1.0 - DBL_EPSILON;
 #else
 static const double factor2 = 1.0 - numeric_limits<double>::epsilon();
 #endif

 next_value();

 double temp = factor1 * double(get_deviate());

 if (temp > factor2)
 return factor2;
 else
 return temp;
}

As we increase the complexity of the algorithms, they get slower; thus the MinimalStandard
is faster than GeneralPurpose, with L’Ecuyer algorithm the slowest of all. The nature of a
stochastic algorithm determines how “random” our random numbers really need to be; for
example, a checkers program is likely to work well with GeneralPurpose, while a complex
genetic algorithm may require the long repetition cycle of LEcuyer.

Roulette Wheels
I introduced the concept of roulette wheel selection in Chapter 2. To recap: this technique

simulates a gambler’s roulette wheel in which the sections represent probabilities that a value
will be chosen. In the case of genetic algorithms, each segment of the wheel represents the
reproductive chance for a chromosome as reflected by its fitness. Several of my applications use
roulette wheels, which is an obvious indicator that a class is in order—or, in this case, a template.

 //--
 // RouletteWheel exception type
 class RouletteException : public GAException
 {
 public:

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 15

 RouletteException() : GAException("Inavlid roulette wheel index") { }
 };

 //--
 // class RouletteWheel: declaration
 template <class T> class RouletteWheel
 {
 public:
 // creation constructor
 RouletteWheel(const T * weights, size_t size);

 // copy constructor
 RouletteWheel(const RouletteWheel<T> & rw);

 // assignment operator
 void operator = (const RouletteWheel<T> & rw);

 // destructor
 ~RouletteWheel();

 // change the weight of an entry
 T change_weight(size_t i, T weight);

 // interrogation
 size_t get_size() { return SIZE; }
 float get_weight(size_t i);

 // retrieve a random index
 size_t get_index();

 protected:
 // number of weights in this wheel
 size_t m_size;

 // array of m_weights
 T * m_weights;

 // total weight of all indexes
 T m_totalWeight;

 // shared random deviate generator
 Coyote::Random<float> m_devgen;

 private:
 // internal copy function
 void copy(const RouletteWheel<T> & rw);
 };

By defining RouletteWheel as a template, I allow it to support fitness values of any numeric
type, as specified by the argument T. When created, a RouletteWheel must be supplied a pair of
parameters identifying an array of T fitness values and a number of elements in that array—
stored, respectively, in the allocated array m_weights and the variable m_size . The value
m_totalweights contains the total of all fitness values in m_weights, and m_devgen is a random
number generator used to “spin” the wheel.

The constructor copies and sums the array of fitness values; if the pointer is NULL, the
constructor creates a new array in which all elements contain an equal weight of one. Note that
the constructor does not scale the incoming values; it does, however, use the utility function abs
to convert negative weights to positive values.

16 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 // creation constructor
 template <class T> RouletteWheel<T>::RouletteWheel(const T * weights,
 size_t size)
 {
 size_t i;

 m_size = size;
 m_weights = new T[size];
 m_totalWeight = T(0);

 if (m_weights == NULL)
 {
 for (i = 0; i < size; ++i)
 {
 m_weights[i] = T(1);
 m_totalWeight += T(1);
 }
 }
 else
 {
 for (i = 0; i < size; ++i)
 {
 m_weights[i] = abs(weights[i]);
 m_totalWeight += abs(weights[i]);
 }
 }
 }

In general, you’ll want to ensure that your weights array contains only positive values, and
that the sum of all weights is greater than zero.

The destructor simply frees memory allocated to the array of weights.

 // destructor
 template <class T> RouletteWheel<T>::~RouletteWheel()
 {
 delete [] m_weights;
 }

I’ve defined the copy constructor and assignment operator as inline functions containing calls
to the utility function copy.

 template <class T> void RouletteWheel<T>::copy(const RouletteWheel<T> & rw)
 {
 m_size = rw.m_size;
 m_weights = new T[m_size];

 m_totalWeight = rw.m_totalWeight;

 memcpy(m_weights,rw.m_weights,sizeof(T) * m_size);
 }

 // copy constructor
 template <class T> inline RouletteWheel<T>::RouletteWheel
 (const RouletteWheel<T> & rw)
 {
 copy(rw);
 }

 // assignment operator
 template <class T> inline void RouletteWheel<T>::operator =
 (const RouletteWheel<T> & rw)
 {

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 17

 copy(rw);
 }

The change_weight method alters a single weight at a given index within the wheel. This
allows dynamic changes to the table.

 template <class T> T RouletteWheel<T>::change_weight(size_t i, T weight)
 {
 if (i >= m_size)
 throw RouletteException();

 m_totalWeight -= m_weights[i];
 m_totalWeight += weight;

 T res = m_weights[i];
 m_weights[i] = weight;

 return res;
 }

The interrogation method get_weight returns the weight values for a specified index.

 // interrogator
 template <class T> inline float RouletteWheel<T>::get_weight(size_t i)
 {
 return (i < m_size) ? m_weights[i] : T(-1);
 }

The get_index method returns a randomly-selected index based on the current weights in
m_weights.

 template <class T> size_t RouletteWheel<T>::get_index()
 {
 T choice = T(m_devgen() * m_totalWeight);
 size_t i = 0;

 while ((i < m_size) && (choice > m_weights[i]))
 {
 choice -= m_weights[i];
 ++i;
 }

 return i;
 }

Floating-Point Reproduction
The majority of genetic algorithms work on pure bit strings, converting those strings to the

desired types for fitness testing. In Lawrence Davis’ book Handbook of Genetic Algorithms, he
transforms a 44-bit string into two floating point values via a series of operations. I’ve seen
similar techniques elsewhere, and I find them a bit cumbersome.

In theory, a GA should have no knowledge of the format of the data it is modifying; however,
natural chromosomes do encode some structure in their sequence. Crossover appears to take
place in specific positions along the chromosome. And while mutation doesn’t care about the
chromosome’s structure, but its does affect that structure. In context of a computer program, the
structure of a chromosome isn’t so important as the ability to logically modify its bits through
crossover and mutation.

18 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

I decided to build tools for the mutation and crossover of encoded floating-point values of
types float and double. The code that follows assumes we are working with 32-bit floats and 64-
bit IEEE doubles, which, in my experience, the norm in Intel-based C and C++ compilers.

Data Types
Floating-point numbers contain scaled values that may have a fractional part. The float and

double types implement the single-precision and double-precision floating-point formats
defined by the Institute of Electrical and Electronic Engineers (IEEE) standard 754-1985. A float
is a 32-bit value, and a double is a 64-bit. These bits in a floating-point value are divided into
three components: A sign bit, an exponent, and a mantissa. Figure 3-1 shows the internal format
of the float and double types. s indicates the sign bit; exp is an abbreviation for exponent.

 31 30 23 22 0

float
 s exp mantissa

 63 62 52 51 0
double
 s exp mantissa

Figure 3-1 Format of IEEE float and double

The highest-order bit in a floating-point value is the sign bit. If the sign bit is one, the value is

negative; if the sign bit is zero, the value is positive. In a float, the exponent occupies 8 bits and
the mantissa uses the remaining 23 bits. A double has a 52-bit mantissa and an 11-bit exponent.
In addition, the mantissa of float and double values has an implicit high-order bit of 1.

The mantissa holds a binary fraction greater than or equal to 1 (because of the implied high bit
being one) and less than 2. The number of bits in the mantissa affects the accuracy of the
floating-point value. A float has 6 decimal digits of accuracy, and a double (with its longer
mantissa) is accurate to 15 decimal digits. Since the mantissa is a binary fraction, and it can’t
always exactly reflect a decimal value you’ve tried to store in it. For example, there is no binary
fraction that can exactly represent the values 0.6 or 1/3. Floating-point numbers represent an
approximation of a decimal value; this is where rounding errors come from.

The exponent is a binary number representing the number of binary digits the mantissa is
shifted left (for a positive actual exponent) or right (for a negative actual exponent). The
exponent is a biased value; you calculate the actual exponent value by subtracting a bias value
from the exponent stored in the value. The bias for a float is 127; the bias for a double is 1023.
Thus, a float value with an exponent of 150 would represent a number with an exponent of 23.
The constants FLT_MIN, FLT_MAX, DBL_MIN, and DBL_MAX define the minimum and
maximum values for floating point numbers, in the Standard C header file float.h. Most C++
compilers define those constants as

#define FLT_MIN 1.17549e-38
#define FLT_MAX 3.40282e+38

#define DBL_MIN 2.22507385850720e-308
#define DBL_MAX 1.79769313486232e+308

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 19

Two other relevant float.h constants are FLT_EPSILON and DBL_EPSILON, which
represent the smallest possible difference between two float and double values.

#define FLT_EPSILON 1.19209e-07
#define DBL_EPSILON 2.22044604925031e-16

In Standard C++, the numeric_limits template (defined in the <limits> header) is specialized
to describe the characteristics of each numeric data type. For the purposes at hand, the relevant
members of numeric_limits are

Bestiary
Floating-point numbers can take on some unusual values. It's possible for a floating-point

number to represent positive and negative infinity, for example. Or, a floating-point value may
be in a special format that doesn't represent a valid number. Any routines that randomly change
floating-point numbers must avoid generating these unusual values.

A floating-point value represents infinity when the bits in the exponent are all one and the bits
in the mantissa are all zero. When both the mantissa and exponent are zero, the floating-point
number is zero. Infinity, as well as zero, can have a sign. Positive and negative zero operate
identically in calculations and comparisons.

When is a number not a number? When its exponent is all ones and its mantissa contains any
set of bits that is not all zeros (which would indicate an infinity). A value in this format is known
as a NaN (Not a Number). The sign bit for a NaN is irrelevant.

So what is the point of knowing these strange floating-point values? For the most part, C++
compilers do not support the use and processing of unusual floating-point values. To maximize
portability, we want to do is avoid the creation of unusual numbers through floating-point
reproduction. And in looking at the above, we can see an obvious commonality between the
troublesome NaNs and infinities: both types have exponents filled with ones.

Mutation in Parts
A floating-point value contains three components that can be changed during mutation and

crossover: the sign bit, exponent, and mantissa. Changing the exponent and sign have the most
dramatic affect on a floating-point value, since the change of one bit can dramatically alter the
magnitude of a number. Assuming that all bits have an equal chance of mutation, we get the
following probabilities that a random bit change will affect a specific component:

 float double
sign bit 3.1% 1.6%
exponent 25.0% 17.1%
mantissa 71.9% 81.3%

Depending on the application, I’ve found that those fixed percentages don’t always allow for

the creation of effective mutations. The exponent, in particular, is so likely to be changed that
numbers often fluctuate wildly within a population after mutation. I decided to create a system
for the roulette-wheel selection of the component to be mutated, allowing me to weight mutation
in favor of changing the mantissa.

20 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

I create a class named FloatBreeder, which defines the parameters of mutation and crossover
for float and double types.

 class FloatBreeder
 {
 public:
 FloatBreeder(float sweight = 5.0F,
 float eweight = 5.0F,
 float mweight = 90.0F);

 float mutate(float f);
 double mutate(double d);

 float crossover(float f1, float f2);
 double crossover(double d1, double d2);

 protected:
 const float m_total_weight;
 const float m_sign_weight;
 const float m_exp_weight;

 static Coyote::Random<float> m_devgen;
 };

When creating a FloatBreeder object, you’ll need to supply three floating-point values
representing the relative chances of changing the parts of a floating-point number.

FloatBreeder::FloatBreeder(float sweight, float eweight, float mweight)
 : m_total_weight(sweight + eweight + mweight),
 m_sign_weight(sweight),
 m_exp_weight(eweight)
{
 // intentionally blank
}

The mutate functions use those values in selecting the sections of float and double values to
be mutated.

float FloatBreeder::mutate(float f)
{
 // mask for exponent bits
 static const long FExpt = 0x7F800000L;

 long x, n, mask;

 // choose section to mutate
 float mpick = m_devgen() * m_total_weight;

 // copy float to long for manipulation
 memcpy(&x,&f,sizeof(long));

 // if all exponent bits on (invalid #), return original
 if ((x & FExpt) == FExpt)
 return f;

 // mutate
 if (mpick < m_sign_weight)
 {
 // flip sign
 mask = 0x80000000L;

 if (x & mask)

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 21

 x &= ~mask;
 else
 x |= mask;
 }
 else
 {
 mpick -= m_sign_weight;

 if (mpick < m_exp_weight)
 {
 // mutate exponent while number is valid
 do {
 n = x;
 mask = 0x00800000L << int(m_devgen() * 8.0F);

 if (n & mask)
 n &= ~mask;
 else
 n |= mask;
 }
 while ((n & FExpt) == FExpt);

 x = n;
 }
 else
 {
 // flip bit in mantissa
 mask = 1L << int(m_devgen() * 23.0F);

 if (x & mask)
 x &= ~mask;
 else
 x |= mask;
 }
 }

 // done!
 float res;
 memcpy(&res,&x,sizeof(float));
 return res;
}

double FloatBreeder::mutate(double d)
{
 // mask for exponent bits
 static const long DExpt = 0x7FF00000UL;

 long x[2], n, mask, bit;

 // choose section to mutate
 double mpick = m_devgen() * m_total_weight;

 // copy double to pair of longs for manipulation
 memcpy(x,&d,2 * sizeof(long));

 if (mpick < m_sign_weight)
 {
 // flip sign
 mask = 0x80000000L;

 if (x[1] & mask)
 x[1] &= ~mask;
 else
 x[1] |= mask;

22 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 }
 else
 {
 mpick -= m_sign_weight;

 if (mpick < m_exp_weight)
 {
 // mutate exponent while number is valid
 do {
 n = x[1];
 mask = 0x00100000L << int(m_devgen() * 11.0F);

 if (n & mask)
 n &= ~mask;
 else
 n |= mask;
 }
 while ((n & DExpt) == DExpt);

 x[1] = n;
 }
 else
 {
 bit = long(m_devgen() * 52.0F);

 if (bit > 31L)
 {
 bit -= 32L;
 mask = 1L << (int)bit;

 if (x[1] & mask)
 x[1] &= ~mask;
 else
 x[1] |= mask;
 }
 else
 {
 // flip bit in mantissa
 mask = 1L << (int)bit;

 if (x[0] & mask)
 x[0] &= ~mask;
 else
 x[0] |= mask;
 }
 }
 }

 // done
 double res;
 memcpy(&res,x,sizeof(double));
 return res;
}

The Mutate functions use a bitmask to examine the bits in a value’s exponent, ensuring that

that any output value is not a NaN or infinity.
My experiments advise me to limit the mutability of the exponent to under 15 percent,

keeping the sign bit mutation rate at about two or three percent. You don’t have to take my word
for it; the next chapter implements a genetic algorithm for which you can set the weights for each

 Scott Robert Ladd – Chapter 3: Tools for Software Evolution – 23

component of floating-point values. That allows you to test my results and explore your own
ideas.

Crossover
Floating-point crossover is a simple operation, implemented as two member functions named

crossover:

float FloatBreeder::crossover(float f1, float f2)
{
 // mask for exponent bits
 static const long FExpt = 0x7F800000L;

 long l1, l2, lcross, mask;
 float fcross;

 // store values in longs
 memcpy(&l1,&f1,sizeof(long));
 memcpy(&l2,&f2,sizeof(long));

 do {
 // create mask
 mask = 0xFFFFFFFFL << size_t(m_devgen() * 32.0F);

 // generate offspring
 lcross = (l1 & mask) | (l2 & (~mask));
 }
 while ((lcross & FExpt) == FExpt);

 // copy result to float and return
 memcpy(&fcross,&lcross,sizeof(float));

 return fcross;
}

double FloatBreeder::crossover(double d1, double d2)
{
 // mask for exponent bits
 static const long DExpt = 0x7FF00000L;

 long l1[2], l2[2], lcross[2], mask, bit;
 double fcross;

 // store values in longs
 memcpy(l1,&d1,sizeof(double));
 memcpy(l2,&d2,sizeof(double));

 do {
 // calculate bit position for flip
 bit = size_t(m_devgen() * 64.0F);

 if (bit > 31) // if flip in high-order word
 {
 // create mask
 mask = 0xFFFFFFFFL << int(bit - 32L);

 // duplicate low-order word of first parent
 lcross[0] = l1[0];

 // crossover in high-order word
 lcross[1] = (l1[1] & mask) | (l2[1] & (~mask));
 }

24 – Scott Robert Ladd – Chapter 3: Tools for Software Evolution

 else
 {
 // create mask
 mask = 0xFFFFFFFFL << int(bit);

 // crossover in low-order word
 lcross[0] = (l1[0] & mask) | (l2[0] & (~mask));

 // duplicate high-order word of first parent
 lcross[1] = l1[1];
 }
 }
 while ((lcross[1] & DExpt) == DExpt);

 // copy and return
 memcpy(&fcross,lcross,sizeof(double));
 return fcross;
}

Why no long double?
What follows is an editorial comment; you can skip it if you like.
I didn’t implement the mutation and crossover operations for long doubles because I don’t

use that type in my programs. On a PC, the 80-bit long double type represents the internal
floating-point format used by the numeric coprocessor. A long double has 18 digits of accuracy;
it is used internally by the math coprocessor so that the results of calculations can be rounded to
produce a very accurate 15 digits of precision in a double. The extra three digits in a long
double provide improved accuracy; they should be viewed very suspiciously by a numerical
programmer since the coprocessor never means for them to be considered or used.

In my view, current implementations of long double are nothing more than frivolous attempts
at adding bullets to the compiler advertisement. I’d be far happier if C and C++ compiler vendors
would implement a full suite of functions for manipulating float values, as required by Standard
C++ and the forthcoming C9X. Double precision values already exceed the accuracy needs of
most scientific and engineering tasks; for most calculations, float is quite adequate.

And for those folks who wonder why some of programmers—including myself—stick with
dusty old FORTRAN: It’s because FORTRAN is still the only language that provides full
intrinsic support for single and double precision floating-point and complex numbers.

Onward
Okay, enough grousing! The tools above are components of the designs in subsequent

chapters, where I implement complex genetic algorithms. In Chapter 4, I’ll implement an
experimental environment for testing the efficacy of advanced genetic algorithms in solving
complex problems.

