3

Toolsfor Softwar e Evolution

Men are only as good as their technical development allows
themto be.—George Orwell, Insidethe Whale

Games, datigticd tests, and genetic dgorithms dl rely on random numbers. Unfortunately, the
built-in rand function is entirely inadequete in circumstances where thousands—or even
millions—of random values need to be generated. A run of the dgorithm from Chapter 2 may
use a hundred thousand or more random vaues. If the random number “generator” produces
repetitive or cyclica vaues, the dgorithm is unlikely to produce satisfactory results.

Random Numbers

A random number isjust that: a number whose vaue cannot be predicted in advance of its
exigence. While the human mind has been known to be unpredictable, it isn't very good at
generating a completely unrelated set of numbers. Try creating alist of twenty random integers
selected from the range one through one hundred, inclusive. Are you sure that your numbers are
redlly random, and not smply fragments of old telephone numbers or checkbook balances? And
wouldnt it be tedious if you had to generate a thousand, or amillion random numbers?

Computers are supposed to be good at reducing tedious numeric operations. Unfortunatdly,
computers perform caculations via dgorithms, and truly random numbers cannot be generated
by an dgorithm. By definition, an dgorithm is a specific sequence of operations that produces a
predictable output for agiven set of parameters. In the case of random numbers, the last thing we
want is something predictable! The best we can do with acomputer is create an dgorithm that
appears to generate a random sequence of numbers. The numbers aren't redlly random—ahuman
with asharp mind or a caculator could predict the numbers in the sequence by following the
agorithm. But the sequence of numbersis very difficult to follow, and a human looking & the
vaueswill not be able to see any dgorithmic pattern to them. For practicd gpplications, pseudo-
random numbers suffice.

What we are griving for is something mathematicians cdl a uniform deviate a sequence such
that every number in agiven range has an equal chance of being produced.

“Randomizing” Algorithms

In genera, a pseudo-random number generator isinitidized with a seed vaue that beginsthe
sequence. A set of mathematical operationsis performed on the seed, generating avauethat is
reported as a pseudo-random number. That return value is then used as the next seed vaue.
Researchers have devoted copious time to inventing and anayzing pseudo-random number
generators. The god of this research has been to produce the most unpredictable sequence of
vaues. Designing agood random number generator involves solving two problems:

© 1996, 2000 by Scott Robert Ladd (scott@coyotegulch.com)
Published by Coyote Guich Productions on 29 November, 1999
Licensing and Open Source Agreements posted at http:/Aww.coyotegulch.com

2 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

Increasing the Sze of the repetition cycle. Asthe dgorithm is gpplied, the seed will
eventudly return to its sarting vaue, and the values start repesting themselves. An
agorithm that repeets after generating a million numbersis more useful than a
generator that repests itsdlf after only a hundred values.

Avoiding predictability. A random number generator that aways returns vaues with
the same last digit isworthless. In generd, any patternsin the output render a
generator usdless for stochastic computing.

While many fancy and complicated agorithms can generate pseudo-random numbers, the
most commonly-used agorithm is aso one of the smplest. Firgt introduced by D. Lehmer in
1951, the linear congruential method involves only two mathematica operations. The formula
is

N.,, =aN. +c (mod m)

N isyour “random” number, and each successive vaue (known as a seed) is based on the
previous one. Each selection of a, ¢, and m produces a sequence of vaues that will eventudly
cycle back to the starting value of N. The equation’ s factors determine the “randomness’ of
vaues and the number of iterations that can be performed before numbers start to repest. The
maximum repetition period ism, but not every combination of a, ¢, and m will produce a
maximd period—and most factor sets produce usdless sequences. For example, if a=1, ¢ =1, and
m = 1, the dgorithm will Smply count by oned

Standard C usesthe following linear congruentia generator in implementing the rand and
srand functions:

static unsigned long next = 1;
int rand(void)

next = next * 1103515245 + 12345;
return ((unsigned int) (next / 65536UL) % 0x32767UL);

void srand(unsigned int seed)

{
}

The Standard C dgorithm is a dight elaboration on the basic linear congruentid dgorithm, in
that it uses along for the seed, but returns only an int. The code above assumes 32-hit longs and
16-bitints.

So why not use rand? Because the agorithm is inadequate for many gpplications. And what's
wrong with alinear congruentia random number generator? Nothing, so long as your random
numbers don't need to be very unpredictable and the repetition of those vaues is not important to
your work. The output of rand islimited, providing vaues that only lie between 0 and 32,767,
indusive. In other words, the Standard C generator will produce only afew thousand values
before repeeting itsdf—afata problem for genetic dgorithms thet rely on vast quantities of
random values. Aside from their numerical limitations, rand and srand have severd faultsfrom
a software engineering standpoint:

next = seed;

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 3

A program mugt explicitly cdl srand toinitidize the seed. If srand isn't cdled, the
default vaue of seed will be used, and every execution of the program will generate
the same sequence of pseudo-random numbers.

Since srand and rand are two separate functions, seed is defined as agloba
variable. Good programmers avoid globa variables, even when those that can be
hidden usng the static keyword.

Sincethereisonly one seed vaue, only one sequence of pseudo-random numbersis
generated in a program. Often, | like to have separate random number generators for
different parts of a program.

The ANSI rand function returns values between 0 and UINT_MAX. In most cases,
| want to retrieve random vaues that are within a specific range, say from 1 to 100,
or between 0.0 and 1.0.

I might want to obtain random numbers that aren’t longs. A templatized class could
provide the flexibility to generate random vaues for any type.

Other problems exist with the Standard rand. Producing a random floating-point vaue
requires a program to divide the result of rand by the consgant RAND_MAX (as| did in Chapter
2). Even worse, some mathematically-inept compiler vendors try to improve on rand, using cute
little byte-swapping tricks that only reduce the period of repetition! Statigtically, even the best
linear congruentia generators suffer from convergence in their numeric sequences, and the ANSI
generator is not the theoretical best.

A Minima Standard

A theoretical best does exist, asthe result of research by S. K. Park and K. W. Miller. For the
multiplicative dgorithm to be effective, a and m can only take on avery few values, m most
certainly must be prime, for example. Park & Miller identified the vduesa = 16807, m =
2147483647, and ¢ = 0 as producing the most gatigtically-random vaues for 32-bit sgned
(usudly long) integers.

Note: For producing 16-bit vaues, agood pair of numbersisa = 171, m = 30269, ¢ = 0.
Park & Miller so suggested other acceptable values for a in 32-bit dgorithms: 42871 and
69621.

One more topic to cover: overflow in multiplication. Obvioudy, if N islarge enough,
multiplying by another large value will exceed the maximum vaue of along, causing an
arithmetic overflow before the modulusby m. To prevent overflow, we can use an approximate
factorization of m, based on the formula known as Schrage’ s Method:

g=m/a; r=mmoda, m=aq+r

Foundation for a Hierarchy

| began with an abstract base class, Generator, defined in the namespace
Coyote::UniformDeviate. The nested namespace kegps the “internd” uniform deviate
identifiers from conflicting with any other names I’ ve declared in my generd Coyote
namespace. Gener ator declares the attributes of any “random number generator”, regardless of
dgorithm.

4 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

namespace Coyote

{
namespace UniformDeviate
{
YA e e e e e e
// class Generator - declaration
class Generator
{
protected:
// sets default seed argument from system time
static long set_seed_from_time()
return (long)time(NULL);
}
public:
// constructor
Generator(long initSeed = set_seed_from_time());
// destructor
virtual ~Generator();
// set seed value
virtual void set_seed(long newSeed = set_seed from_time());
// get the current "random” value
virtual long get _deviate();
// calculate next seed value
virtual void next_value() = 0;
protected:
long m_seed; // the seed for generator 1
}:
inline void UniformDeviate: :Generator::set_seed(long initSeed)
{
m_seed = initSeed;
}
// get the current "random” value
inline long UniformDeviate: :Generator: :get_deviate()
{
return m_seed;
}
}
}

The private set_seed _from_time method automaticaly initializes the congtructor’ s seed
parameter with the current system time. Y ou can, of course, supply a specific seed when
congructing a Gener ator object; any time the generator is run with a specific seed, it will return
the same sequence of vaues, a ussful technique when you require reproducible results (as in, for
example, a scientific paper).

| defined the Gener ator congtructor and destructor in an implementation file. In generd,
congructors and destructor should not be defined as inline functions in a header; compilers
autométicaly generate cdls to these functions under many circumstances, and code can quickly
bloat if every ingance of cregtion isinline.

// constructor
UniformDeviate: :Generator: :Generator(long initSeed)

{

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 5

set_seed(initSeed);

}

// destructor
UniformDeviate: :Generator: :~Generator()

// does nothing in this base class

}

My basic implementation of Gener ator isMinimalStandar d, atemplate classwith
arguments that define values for a and m. By defaullt, | use the Park-Miller numbers, but later in
the chapter, I'll be building better algorithms by combining Minimal Standar d objectswith
different a and m values. The compiler will interpret these parameter vaues as manifest
congtants, dlowing agood compiler to generate efficient code for next_value.

namespace Coyote

{

namespace UniformDeviate

{

// class MinimalStandard - declaration
template <long A = 16807L, long M = LONG_MAX>

class MinimalStandard : public Generator
{

public:
// constructor
MinimalStandard(long initSeed = set_seed_from_time());

// destructor
virtual ~MinimalStandard();

// calculate next seed value
virtual void next value();

// interrogators
long get MO { return M; }
long get_ AQ { return A; }

protected:
const long Q; // quotient (used in Schrage®s method)
const long R; // remainder (used in Schrage®s method)

// class MinimalStandard - definition

// constructor

template <long A, long M>
MinimalStandard<A,M>: :MinimalStandard(long initSeed)
: Generator(initSeed), Q(M/A), R(M%A)

// nothing here
}

// destructor
template <long A, long M>
MinimalStandard<A,M>: :~MinimalStandard()

// nothing here, either
}

6 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

// move to next seed
template <long A, long M>
void MinimalStandard<A,M>::next_value()

{
// compute seed = (a * seed) % m, using Schrage"s method
long k = m_seed 7/ Q;
mseed = A * (mseed - k * Q) - R * k;
if (n_seed < 0)
m_seed += M;
}

}

The MinimalStandard dassis only the beginning; it provides a base from which we can
build even more sophidticated agorithms.

Better than Minimal

One problem with the Minima Standard isthat it can suffer from sequences of repetitive
bytes or vaues. For example, certain large values may always be followed by very smal vaues.
Such problems can be avoided by using the generator to randomize itself. The best-known
technique is cdled a shuffle: Create an smal array, load it with the first few generated vaues,
then use subsequent invoceations of the dgorithm to generate an random index into that array;
return the indexed value, and replace it in the array with the another random value. Yes, | know
it sounds complicated—abut redly, al we re doing is mixing up the generated values so that they
don’t gppear in the usua sequence, thus avoiding any correations or predictable sequences.

Adding ashuffleto MinimalStandard is easy; | derived a new template class,
GeneralPur pose, the indludes the shuffle while usng the dgorithmic code it inherits

// class GeneralPurpose - declaration
template <long A = 16807L, long M = LONG_MAX>

class GeneralPurpose : public MinimalStandard<A,M>
{

public:
// constructor
GeneralPurpose(long initSeed = set_seed_from_time());

// destructor
virtual ~GeneralPurpose();

// set seed value
virtual void set_seed(long newSeed = set_seed from_time());

// get the current "random” value
virtual long get _deviate();

// calculate next seed value
virtual void next_value();

protected:
// set seed value
void init_table(long seed);

// table factors
const long TABLE_SIZE; // size of the table
const long TABLE_DIV; // ratio of M / TABLE_SIZE

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 7

// shuffle table and values used therein
long * m_table;
long m_shuffle;

// class GeneralPurpose - definition

// constructor
template <long A, long M>
GeneralPurpose<A,M>: :GeneralPurpose(long
. MinimalStandard<A,M>(initSeed),
TABLE_SIZE(32L),
TABLE_DIV(1L + (M - 1L) / TABLE_SIZE)

nitSeed)

m_table = new long[TABLE_SIZE];
init_table(initSeed);

}

// destructor
template <long A,long M> GeneralPurpose<A,M>::~GeneralPurpose()

delete [] m_table;
}

// set seed value
template <long A, long M>

inline void GeneralPurpose<A,M>::set_seed(long newSeed)
{

}

template <long A, long M>
void GeneralPurpose<A,M>::init_table(long seed)

init_table(newSeed);

{
m_seed = seed;
m_shuffle = 0;
// avoid zero or negative seed!
it (m_seed <= 0)
m_seed = 299792458L ;
// initialize the table by getting the first few deviates
for (int i = TABLE_SIZE + 7; i1 >= 0; --i)
{
// get next value in sequence
MinimalStandard<A,M>::next_value();
// store it in a table entry
if (i < TABLE_SIZE)
m_table[i] = m_seed;
}
// select our shuffled-out value
m_shuffle = m_table[0];
}

// get the current "random" value
template <long A, long M>

inline long GeneralPurpose<A,M>::get_deviate()
{

}

return m_shuffle;

8 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

// move to next seed
template <long A,long M> void GeneralPurpose<A,M>::next_value()

{

// get next value In sequence
MinimalStandard<A,M>: :next_value();

// shuffle out table value; save current seed in its place
size_t i = m_shuffle / TABLE DIV;

m_shuffle
m_table[i]

m_table[i];
m_seed;

}

The Best of the Best

Even the Minima Standard can show weaknesses when generating millions of values. Ina
1988 issue of Communications of the ACM, Paul L’ Ecuyer suggested a variety of agorithms for
the production of religble, long-period random deviates. By combining two generators based on
the Minimal Standard, L’ Ecuyer creetes aroutine that avoids the pitfals of smpler dgorithms.
The generator, which I’ ve used below in my Random class template, produces uniform random
deviates between 0.0 and 1.0.

Inanutshdl, L’ Ecuyer's dgorithm uses an approximate factorization, “shuffling” each result
to remove correlation in low-order bits. A single generator of that type will have arepetition
period of about 108—which, believe it or not, may not be adequate for some very complex
genetic dgorithms. Running a thousand generations for a population of a hundred chromosomes
may require millions of random vaues. Combining two such generators with ajudicious
selection of factors the period to approximately 2.3~ 10*8, which should be more than effective
in genetic dgorithms of any practica scope. The L Ecuyer classis not atemplate, but rather a
regular class based on ingantiations of the Gener alPur pose and MinimalStandar d template
classes.

// class LEcuyer - declaration
class LEcuyer : public Generator

{
public:
// constructor
LEcuyer(long initSeed = set_seed_from_time());

// destructor
virtual ~LEcuyer(Q);

// set seed value
virtual void set_seed(long newSeed = set_seed from_time());

// get the current "random” value
virtual long get _deviate();

// calculate next seed value
virtual void next_value();

protected:
// internal generators
GeneralPurpose <40014L,2147483563L> m_randl;
MinimalStandard<40692L ,2147483399L> m_rand2;
}:

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 9

// get the current "random" value
inline long LEcuyer::get _deviate()

{
}

} /7 end namespace UniformDeviate

return m_seed;

// class LEcuyer - definition
// constructor

LEcuyer: :LEcuyer(long initSeed)
: m_randl(initSeed), m_rand2(initSeed)
{

}

// destructor
LEcuyer: :~LEcuyer()

m_seed = m_randl.get _deviate();

// nothing here
}

// set seed value
void LEcuyer::set_seed(long newSeed)

{
m_randl.set_seed(newSeed);
m_rand2.set_seed(newSeed);
m_seed = m_randl.get deviate();
}

// move to next seed
void LEcuyer::next_value()

{

// get next value In sequence
m_randl.next value();
m_rand2.next_value(Q);

// combined values
m_seed = m_randl.get _deviate() - m_rand2.get_deviate();

it (m_seed < 0)

m_seed += (m_randl.get MO - 1);
}

Random Templates

The aforementioned classes provide the agorithmic machinery for random number
generation, and are dl defined in the Coyote: : Unifor mDeviate namespace. To define practical
random number generators, | created apair of very smple templates, Random (based on
GeneralPurpose) and RandomL Ecuyer (aderivative of L Ecuyer). These templates specidize
on atypethat isto be randomized. I’ ve created specializations for common typeslikeint, size t,
float, and double.

// class Random - declaration
template <typename T> class Random

: private UniformDeviate: :GeneralPurpose<>
{

10 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

public:
// constructor
Random(long initSeed = set_seed_from_time());

// get value
T operator) Q;

T operator (O (T limit); // range 0 to < max
T operator () (T min, T max); // range min to max

// class Random - definition
template <typename T> Random<T>::Random(long initSeed)
= UniformDeviate: :GeneralPurpose<>(initSeed)

// nothing else to do

// class Random: <float> specialization
float Random<float>::operator () Q;

template <> inline float Random<float>::operator () (float limit)

{
return limit * Random<float>::operator QOQ;
}
template <> inline float Random<float>::operator () (float min,
float max)
{
return min + (max - min) * Random<float>::operator QQ;
}
/)

// class Random: <double> specialization
double Random<double>::operator () Q;
template <> inline double Random<double>::operator ()

(double limit)
{

}

template <> inline double Random<double>::operator () (double min,
double max)
{

return limit * Random<double>::operator QQ;

return min + (max - min) * Random<double>::operator QQ;

// class Random: <int> specialization

template <> inline int Random<int>::operator O O

{
next _value(Q);
return int(get_deviate());
}
template <> inline int Random<int>::operator () (int limit)
{

next_value();
return int((get_deviate()) % long(limit));

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 11

}

template <> inline int Random<int>::operator () (int min, int max)

{

next_value();
return min + Random<int>::operator (Q(max - min + 1);

// class Random: <size_t> specialization

template <> inline size_t Random<size_t>::operator () O

{
next_value();
return size_t(get_deviate()):

}

template <> inline size_t Random<size_t>::operator ()
(size_t limit)
{

next_value();
return size_t((get_deviate()) % long(limit));
}

template <> inline size_t Random<size t>::operator () (size_t min,
size_t max)

{

next_value();

return min + Random<size_ t>::operator Q(max - min + 1);
}
[

// class RandomLEcuyer - declaration
template <typename T> class RandomLEcuyer
: private UniformDeviate: :LEcuyer

{
public:
// constructor
RandomLEcuyer(long initSeed = set_seed_from_time());

// get value
T operator O O;

T operator (O (T limit); // range 0 to < max
T operator () (T min, T max); // range min to max

// class RandomLEcuyer - definition
template <typename T> RandomLEcuyer<T>::RandomLEcuyer
(long initSeed)
o UniformDeviate: :LEcuyer(initSeed)

// nothing else to do

// class RandomLEcuyer: <float> specialization
float RandomLEcuyer<float>::operator) Q;

template <> inline float RandomLEcuyer<float>::operator ()
(float limit)
{

return limit * RandomLEcuyer<float>::operator QOQ;

12 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

}

template <> inline float RandomLEcuyer<float>::operator ()
(float min, float max)
{

return min + (max - min) * RandomLEcuyer<float>::operator ()Q;

// class RandomLEcuyer: <double> specialization
double RandomLEcuyer<double>::operator () O;
template <> inline double RandomLEcuyer<double>::operator ()

(double limit)
{

}

template <> inline double RandomLEcuyer<double>::operator ()
(double min, double max)
{

return limit * RandomLEcuyer<double>::operator QQ;

return min + (max-min) * RandomLEcuyer<double>::operator QOQ;

// class RandomLEcuyer: <int> specialization

template <> inline int RandomLEcuyer<int>::operator O O

{
next_value();
return int(get_deviate());
}
template <> inline int RandomLEcuyer<int>::operator () (int limit)
{
next_value();
return int((get_deviate()) % long(limit));
¥

template <> inline int RandomLEcuyer<int>::operator ()
(int min, int max)

{

next_value();

return min + RandomLEcuyer<int>::operator (Q(max - min + 1);
}
[

// class RandomLEcuyer: <size_t> specialization

template <> inline size_t RandomLEcuyer<size t>::operator) O

{

next_value();
return size_t(get _deviate());

}

template <> inline size_t RandomLEcuyer<size_t>::operator ()
(size_t limit)
{

next_value();
return size_t((get_deviate()) % long(limit));

}

template <> inline size_t RandomLEcuyer<size t>::operator ()

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 13

(size_t min, size_t max)

next _value();
return min + RandomLEcuyer<size_t>::operator (Q(max - min + 1);

}

} // end namespace Coyote

The double and float specializations were too complicated to be implemented entirely in a
header file. Note the conditiona compilation statements that handle GNU C++' s lack of full
support for the Standard C++ numeric_limits header.

// class Random: <float> specialization

float Random<float>::operator)

{
static const float factorl = 1.0F /7 float(get_MQ);

#ifdef _ GNUC__

static const float factor2
#else

static const float factor2 = 1.0F - numeric_limits<float>::epsilon();
#endif

1.0F - FLT_EPSILON;

next _value();
float temp = factorl * float(get_deviate());

if (temp > factor2)
return factor2;
else
return temp;

// class Random: <double> specialization

double Random<double>::operator O O

{
static const double factorl = 1.0 / double(get_MQ);

#ifdef _ GNUC__

static const double factor2
#else

static const double factor2 = 1.0 - numeric_limits<double>::epsilon();
#endif

1.0 - DBL_EPSILON;

next value();
double temp = factorl * double(get_deviate());
if (temp > factor2)

return factor2;

else
return temp;

// class RandomLEcuyer: <float> specialization

float RandomLEcuyer<float>::operator O O
{

14 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

static const float factorl = 1.0F / float(LEcuyer::m_randl.get MQ);

#ifdef _ GNUC__

static const float factor2 = 1.0F - FLT_EPSILON;

#else

static const float factor2 = 1.0F - numeric_limits<float>::epsilon();
#endif

next _value();
float temp = factorl * float(get_deviate());
if (temp > factor2)

return factor2;

else
return temp;

// class RandomLEcuyer: <double> specialization

double RandomLEcuyer<double>::operator () O

{

}

static const double factorl = 1.0 / double(LEcuyer::m_randl.get_MQ);

#ifdef _ GNUC__

static const double factor2 = 1.0 - DBL_EPSILON;

#else

static const double factor2 = 1.0 - numeric_limits<double>::epsilon();
#endif

next_value();
double temp = factorl * double(get_deviate());
if (temp > factor2)

return factor?;

else
return temp;

Aswe increase the complexity of the agorithms, they get dower; thus the Minimal Standard
isfaster than Gener alPur pose, with L’ Ecuyer dgorithm the dowest of dl. The nature of a
gochastic agorithm determines how “random” our random numbers redlly need to be; for
example, a checkers program islikely to work well with Gener alPur pose, while acomplex
genetic agorithm may require the long repetition cyce of L Ecuyer.

Roulette Whedls

| introduced the concept of roulette whedl selection in Chapter 2. To recap: this technique
amulates a gambler’ s roulette whed in which the sections represent probabilities that avaue
will be chosen. In the case of genetic agorithms, each segment of the whed representsthe
reproductive chance for a chromosome as reflected by its fitness. Severd of my applications use
roulette wheds, which is an obvious indicator that a classisin order—or, in this case, atemplate.

// RouletteWheel exception type
class RouletteException : public GAException

{
public:

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 15

RouletteException() : GAException(*Inavlid roulette wheel index™) { }

// class RouletteWheel: declaration
template <class T> class RouletteWheel

public:

// creation constructor
RouletteWheel(const T * weights, size_t size);

// copy constructor
RouletteWheel (const RouletteWheel<T> & rw);

// assignment operator
void operator = (const RouletteWheel<T> & rw);

// destructor
~RouletteWheel) ;

// change the weight of an entry
T change_weight(size_t i, T weight);

// interrogation
size_t get _size() { return SIZE; }
float get weight(size_t i);

// retrieve a random index
size_t get_index();

protected:

// number of weights in this wheel
size_t m_size;

// array of m_weights
T * m_weights;

// total weight of all indexes
T m_totalWeight;

// shared random deviate generator
Coyote: :Random<float> m_devgen;

private:

// internal copy function
void copy(const RouletteWheel<T> & rw);

By defining RouletteWheel as atemplate, | dlow it to support fitness vaues of any numeric
type, as specified by the argument T. When created, a RouletteWWheel must be supplied a pair of
parametersidentifying an array of T fitness values and a number of dementsin that array—
stored, respectively, in the dlocated array m_weights and the variable m_size. The vaue
m_totalweights containsthe totd of dl fitnessvaduesin m_weights, and m_devgenisarandom

number generator used to “spin” the whed.

The congtructor copies and sumsthe array of fitness vaues, if the pointer isNULL, the
congiructor crestes anew array in which al eements contain an equal weight of one. Note that
the congtructor does not scae the incoming values; it does, however, use the utility function abs

to convert negative weights to postive vaues.

16 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

// creation constructor
template <class T> RouletteWheel<T>::RouletteWheel(const T * weights,
size_t size)

t _
size_t i;
m_size = size;
m_weights = new T[size];
m_totalWeight = T(0);
if (m_weights == NULL)
for (i = 0; i1 < size; ++i)
{
m_weights[i] = T();
m_totalWeight += T(1);
}
}
else
for (i = 0; 1 < size; ++i)
m_weights[i] = abs(weights[i]);
m_totalWeight += abs(weights[i]);
}
}
}

In generd, you'll want to ensure that your weights array contains only positive vaues, and
that the sum of dl weghtsis grester than zero.

The destructor smply frees memory alocated to the array of weights.

// destructor
template <class T> RouletteWheel<T>::~RouletteWheel ()

delete [] m _weights;
}

I’ve defined the copy constructor and assgnment operator as inline functions containing calls
to the utility function copy.

template <class T> void RouletteWheel<T>::copy(const RouletteWheel<T> & rw)

{
m_size = rw.m_size;
m_weights = new T[m_size];
m_totalWeight = rw.m_totalWeight;
memcpy(m_weights,rw.m weights,sizeof(T) * m_size);
}

// copy constructor

template <class T> inline RouletteWheel<T>::RouletteWheel
(const RouletteWheel<T> & rw)

{

copy(rw);

// assignment operator

template <class T> inline void RouletteWheel<T>::operator =
(const RouletteWheel<T> & rw)

{

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 17

copy(rw);

The change weight method dtersasingle weight & a given index within the whed. This
alows dynamic changesto the table.
template <class T> T RouletteWheel<T>::change_ weight(size_t i, T weight)
{
if (i >= m_size)
throw RouletteException();

m_totalWeight -= m_weights[i];
m_totalWeight += weight;

T res = m_weights[i];
m_weights[i] = weight;

return res;

¥
The interrogation method get_weight returns the weight vaues for a specified index.

// interrogator
template <class T> inline float RouletteWheel<T>::get weight(size_t i)

return (i < m_size) ? m_weights[i] : T(-1);

}

The get_index method returns a randomly-selected index based on the current weightsin
m_weights.

template <class T> size_t RouletteWheel<T>::get_index()

{
T choice = T(m_devgen() * m_totalWeight);
size_ t i = 0;
while ((i < m_size) && (choice > m weights[i]))
choice -= m_weights[i];
++1i;
}
return i;
}

Floating-Point Reproduction

The mgority of genetic agorithmswork on pure bit strings, converting those strings to the
desired types for fitnesstesting. In Lawrence Davis book Handbook of Genetic Algorithms he
transforms a 44-hit string into two floating point vaues via a series of operations. I’ ve seen
amilar techniques dsewhere, and | find them a bit cumbersome.

In theory, a GA should have no knowledge of the format of the detait is modifying; however,
natural chromosomes do encode some structure in their sequence. Crossover gppears to take
place in specific postions aong the chromosome. And while mutation doesn’t care about the
chromosome' s structure, but its does affect that structure. In context of a computer program, the
dructure of a chromosome isn't so important as the ability to logicaly modify its bits through
crossover and mutation.

18 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

| decided to build tools for the mutation and crossover of encoded floating-point va ues of
typesfloat and double. The code that follows assumes we are working with 32-bit floats and 64-
bit IEEE doubles, which, in my experience, the norm in Inte-based C and C++ compilers.

Data Types

Hoating-point numbers contain scaled vaues that may have afractiona part. Thef | oat and
doubl e typesimplement the Sngle-precision and doubl e-precison floating-point formats
defined by the Indtitute of Electrical and Electronic Engineers (IEEE) standard 754-1985. A float
isa32-hit vdue, and adouble is a 64-hit. These bitsin afloating-point vaue are divided into
three components: A sgn hit, an exponent, and a mantissa. Figure 3- 1 shows the interna format
of the float and double types. sindicates the Sgn bit; exp is an abbreviation for exponent.

31 30 23 22 0
f I oat] | |
S exp mant i ssa
63 62 52 51 0
double | | | |
S exp manti ssa

Figure 3-1 Format of |EEE float and double

The highest-order bit in afloating-point vaue isthe Sgn bit. If the Sgn bit isone, the vaueis
negative; if the 9gn bit is zero, the value is pogtive. In afloat, the exponent occupies 8 bits and
the mantissa uses the remaining 23 bits. A double has a 52-bit mantissa and an 11- bit exponent.
In addition, the mantissa of float and double vaues has an implicit high-order bit of 1.

The mantissa holds a binary fraction greater than or equal to 1 (because of the implied high bit
being one) and less than 2. The number of bits in the mantissa affects the accuracy of the
floating-point vaue. A float has 6 decimd digits of accuracy, and adouble (with itslonger
mantissa) is accurate to 15 decima digits. Since the mantissais abinary fraction, and it can't
aways exactly reflect adecimd vaue you've tried to storein it. For example, thereis no binary
fraction that can exactly represent the values 0.6 or 1/3. Floating- point numbers represent an
goproximation of adecima vaue; thisis where rounding errors come from.

The exponent is a binary number representing the number of binary digits the mantissais
shifted Ieft (for a postive actud exponent) or right (for a negeative actua exponent). The
exponent isabiased vaue; you cdculae the actua exponent vaue by subtracting a bias value
from the exponent stored in the value. The biasfor afloat is 127; the bias for adouble is 1023.
Thus, afloat vaue with an exponent of 150 would represent a number with an exponent of 23.
ThecongantsFLT_MIN, FLT_MAX, DBL_MIN, and DBL_MAX define the minimum and
maximum vaues for floating point numbers, in the Standard C header file float.h. Most C++
compilers define those constants as

#define FLT_MIN 1.17549e-38
#define FLT_MAX 3.40282e+38

#define DBL_MIN 2.22507385850720e-308
#define DBL_MAX 1.79769313486232e+308

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 19

Two other relevant float.h constantsare FLT_EPSILON and DBL _EPSIL ON, which
represent the smallest possible difference between two float and double values.

#define FLT_EPSILON 1.19209e-07
#define DBL_EPSILON 2.22044604925031e-16

In Standard C++, the numeric_limits template (defined in the <limits> header) is specidized
to describe the characteristics of each numeric data type. For the purposes a hand, the relevant
membersof numeric_limits are

Bestiary

Hoating-point numbers can take on some unusua values. It's possible for a floating-point
number to represent positive and negative infinity, for example. Or, afloating-point vaue may
be in aspecid format that doesn't represent avalid number. Any routines that randomly change
floating- point numbers must avoid generating these unusud values.

A floating-point va ue represents i nfinity when the bitsin the exponent are al one and the bits
in the mantissa are al zero. When both the mantissa and exponent are zero, the floating- point
number is zero. Infinity, aswell as zero, can have asign. Pogitive and negative zero operate
identicaly in caculations and comparisons.

Whenisanumber not a number? When its exponent is al ones and its mantissa contains any
set of bitsthat isnot dl zeras (which would indicate an infinity). A vaue in this format is known
asaNaN (Not a Number). The sgn bit for aNaN isirrdevant.

So what isthe point of knowing these strange floating- point values? For the most part, C++
compilers do not support the use and processing of unusud floating-point vaues. To maximize
portability, we want to do is avoid the creation of unusua numbers through floating-point
reproduction. And in looking at the above, we can see an obvious commonality between the
troublesome NalNs and infinities: both types have exponents filled with ones.

Mutation in Parts

A floating-point vaue contains three components that can be changed during mutation and
crossover: the sign bit, exponent, and mantissa. Changing the exponent and sign have the most
dramatic affect on afloating-point vaue, since the change of one bit can dramaticaly dter the
meagnitude of anumber. Assuming that al bits have an equa chance of mutation, we get the
following probatilities that a random bit change will affect a specific component:

float double

sign bit 3.1% 1.6%
exponent 25. 0% 17. 1%
manti ssa 71. 9% 81.3%

Depending on the gpplication, I ve found that those fixed percentages don’t dways dlow for
the creation of effective mutations. The exponent, in particular, is o likely to be changed that
numbers often fluctuate wildly within a population after mutation. | decided to create a system
for the roulette-whed selection of the component to be mutated, alowing me to weight mutation
in favor of changing the mantissa.

20 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

| create a class named FloatBr eeder, which defines the parameters of mutation and crossover
for float and double types.

class FloatBreeder

{
public:

FloatBreeder(float sweight = 5.0F,
float eweight = 5.0F,
float mweight = 90.0F);

float mutate(float T);

double mutate(double d);

float crossover(float f1, float f2);

double crossover(double d1, double d2);

protected:

const float m_total weight;

const float m_sign_weight;

const float m_exp_weight;

static Coyote::Random<float> m_devgen;

}:

When cregting a FloatBr eeder object, you'll need to supply three floating- point values
representing the relative chances of changing the parts of a floating-point number.

FloatBreeder: :FloatBreeder(float sweight, float eweight, float mweight)
: m_total_weight(sweight + eweight + mweight),
m_sign_weight(sweight),
m_exp_weight(eweight)

// intentionally blank
}

The mutate functions use those values in selecting the sections of float and double valuesto
be mutated.

float FloatBreeder: :mutate(float)
{

// mask for exponent bits
static const long FExpt = Ox7F800000L;

long x, n, mask;

// choose section to mutate
float mpick = m_devgen() * m_total_weight;

// copy float to long for manipulation
memcpy (&x,&F,sizeof(long));

// if all exponent bits on (invalid #), return original
it ((x & FExpt) == FExpt)
return f;

// mutate
it (mpick < m_sign_weight)

// Tlip sign
mask = 0x80000000L ;

if (X & mask)

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 21

X &= ~mask;

else
X |= mask;
3
else
mpick -= m_sign_weight;
it (mpick < m_exp_weight)
// mutate exponent while number is valid
do {
n = X;
mask = 0x00800000L << int(m_devgen() * 8.0F);
it (n & mask)
n &= ~mask;
else
n |= mask;
>
while ((n & FExpt) == FExpt);
X = n;
}
else
{ _
// flip bit in mantissa
mask = 1L << int(m_devgen() * 23.0F);
if (x & mask)
X &= ~mask;
else
X |= mask;
}
}
// done!

float res;
memcpy (&res,&x,sizeof(Float));
return res;

}

double FloatBreeder::mutate(double d)
{

// mask for exponent bits
static const long DExpt = Ox7FFO0000UL;

long x[2], n, mask, bit;

// choose section to mutate
double mpick = m_devgen() * m_total_weight;

// copy double to pair of longs for manipulation
memcpy(X,&d,2 * sizeof(long));

if (mpick < m_sign_weight)

// flip sign
mask = 0x80000000L;

it (X[1] & mask)
x[1] &= ~mask;
else
x[1] |= mask;

22 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

}
else
{
mpick -= m_sign_weight;
it (mpick < m_exp_weight)
{
// mutate exponent while number is valid
do {
n = x[11;
mask = 0x00100000L << int(m_devgen() * 11.0F);
it (n & mask)
n &= ~mask;
else
n |= mask;
}
while ((n & DExpt) == DExpt);
x[1] = n;
else
{
bit = long(m_devgen() * 52.0F);
if (bit > 31L)
{
bit -= 32L;
mask = 1L << (int)bit;
it (X[1] & mask)
x[1] &= ~mask;
else
X[1] |= mask;
else
{
// Tlip bit in mantissa
mask = 1L << (int)bit;
it (X[0] & mask)
x[0] &= ~mask;
else
X[0] |= mask;
}
}
// done

double res;
memcpy(&res, x,sizeof(double));
return res;

The M utate functions use a bitmask to examine the bits in avaue s exponent, ensuring that
that any output value isnot aNaN or infinity.

My experiments advise me to limit the mutability of the exponent to under 15 percent,
keeping the sign bit mutation rate at about two or three percent. Y ou don’t have to take my word
for it; the next chapter implements a genetic agorithm for which you can set the weights for each

Scott Robert Ladd — Chapter 3: Tools for Software Evolution — 23

component of floating-point values. That alows you to test my results and explore your own
idess.

Crossover

Hoating-point crossover is asmple operation, implemented as two member functions named
Cr OSSover:

float FloatBreeder: :crossover(float f1, float f2)
{

// mask for exponent bits
static const long FExpt = 0x7F800000L;

long 11, 12, lIcross, mask;
float fcross;

// store values in longs
memcpy(&11,&F1l,sizeof(long));
memcpy(&12,&F2,sizeof(long));

do {
// create mask
mask = OXFFFFFFFFL << size_t(m_devgen() * 32.0F);

// generate offspring
Icross = (11 & mask) | (12 & (~mask));

while ((Icross & FExpt) == FExpt);

// copy result to float and return
memcpy (&fcross, &lcross,sizeof(Float));

return fcross;

}

double FloatBreeder::crossover(double d1, double d2)

{

// mask for exponent bits
static const long DExpt = Ox7FFO000O0L;

long 11[2], 12[2], lcross[2], mask, bit;
double fcross;

// store values in longs
memcpy(11,&d1,sizeof(double));
memcpy(12,&d2,sizeof(double));

do {
// calculate bit position for flip
bit = size_t(m_devgen() * 64.0F);
if (bit > 31) // if flip in high-order word
{

// create mask
mask = OxFFFFFFFFL << int(bit - 32L);

// duplicate low-order word of First parent
Icross[0] = 11[0];

// crossover in high-order word
Icross[1] = (I1[1] & mask) | (12[1] & (~mask));

24 — Scott Robert Ladd — Chapter 3: Tools for Software Evolution

else

// create mask
mask = OXFFFFFFFFL << int(bit);

// crossover in low-order word
Icross[0] = (I1[0] & mask) | (12[0] & (~mask));

// duplicate high-order word of first parent
Icross[1] = 11[1];
}

}
while ((Icross[1] & DExpt) == DExpt);

// copy and return

memcpy (&fcross, Icross,sizeof(double));
return fcross;

}

Why no long double?
Wheat followsis an editoria comment; you can skip it if you like.

| didn’t implement the mutation and crossover operations for long doubles because | don't
use that type in my programs. On a PC, the 80-hit long double type represents the interna
floating-point format used by the numeric coprocessor. A long double has 18 digits of accuracy;
it isused internaly by the math coprocessor so that the results of calculations can be rounded to
produce a very accurate 15 digits of precison in adouble. The extrathree digitsin along
double provide improved accuracy; they should be viewed very suspicioudy by anumerica
programmer since the coprocessor never means for them to be considered or used.

In my view, current implementations of long double are nothing more than frivolous attempts
at adding bullets to the compiler advertissment. I'd be far happier if C and C++ compiler vendors
would implement afull suite of functions for manipulaing float vaues, as required by Standard
C++ and the forthcoming C9X. Double precision values dready exceed the accuracy needs of
most scientific and engineering tasks, for most cdculations, float is quite adequate.

And for those folks who wonder why some of programmers—induding mysdf—stick with
dusty old FORTRAN: It's because FORTRAN is till the only language thet provides full
intringic support for sngle and double precision floating-point and complex numbers.

Onward

Okay, enough grousing! The tools above are components of the designsin subsequent
chapters, where | implement complex genetic agorithms. In Chapter 4, I'll implement an
experimenta environment for testing the efficacy of advanced genetic dgorithmsin solving
complex problems.

