
1

Currently under second review in European Journal of Operational Research

CHARACTERIZING SEARCH SPACES FOR TABU SEARCH

Christopher R. Houck, Jeffrey A. Joines, Michael G. Kay

Department of Industrial Engineering, North Carolina State University, Raleigh, NC 27695-7906

Abstract

A large number of heuristic search algorithms are available for function optimization. Each of

these heuristics, e.g., simulated annealing, genetic algorithms, tabu search, etc., has been shown

to be effective at finding good solutions efficiently. However, little work has been directed at

determining what are the important problem characteristics for which one algorithm is more effi-

cient than the others. By examining two problems, the location–allocation problem and the qua-

dratic assignment problem, characteristics of successful tabu search are illustrated. A tabu search

for the location–allocation problem is described and implemented. The results of this tabu search

are compared against a genetic algorithm. For the quadratic assignment problem, tabu search has

been shown more effective than genetic algorithms; however, for the location–allocation problem,

the genetic algorithm finds better solutions more efficiently than tabu search. To investigate what

characteristics of the location–allocation problem makes it less amenable to tabu search, a com-

parison between the location–allocation problem and the quadratic assignment problem is per-

formed. A comparison of the problem characteristics reveals that the location–allocation problem

has very large basins of attraction around a few local optima. For tabu search to escape these min-

ima requires a large number of iterations. Finally, a combination of both tabu search and genetic

algorithms is presented for the location-allocation problem,where regions around genetically

determined sample points are marked as tabu. This combination compares favorably to the

genetic algorithm in terms of increased computational efficiency.

1.0 Introduction

Recently, a lot of attention has been directed at exploring the efficiency of meta-heuristics for

solving hard search problems. Meta-heuristics guide the application and use of local heuristics.

They are used to search the many local optima which most local heuristics find, attempting to

2

locate the global optimum. This approach has met with a good deal of success. Martin and Otto

[17] used 3-opt switching as a local optimizer and 4-opt switching as the meta-heuristic to search

the local optima found by the 3-opt switches. This procedure found the best known solution for

“moderate” sized TSP problems, 532 and 783 city problems.

The location–allocation problem involves both the location in a continuous plane of new facilities

together with the allocation of the flow requirements of existing facilities to the new facilities.

The location–allocation problem is a problem which has aspects of both continuous nonlinear

function optimization and combinatorial optimization. Given the new facility locations or the

existing facility allocations, the resulting subproblems are easy: given the allocation of existing

facilities, one can determine the locations of the new facilities by solving an unimodal, uncon-

strained nonlinear optimization subproblem; given the location of the new facilities, the optimal

allocations can easily be determined. Therefore, one can either search for the locations, a continu-

ous nonlinear function problem, or the allocations, a combinatorial optimization problem.

Tabu search, a popular meta-heuristic for combinatorial problems has been found to be very effec-

tive at a wide range of combinatorial problems [7, 16, 21]. Several researchers have reported tabu

search to be more efficient and able to yield better solutions than either genetic algorithms or sim-

ulated annealing [1, 2]. A tabu search for solving the location–allocation problem by searching for

the optimal allocation is developed in this paper. The efficiency and quality of the final solutions

are compared against a genetic algorithm.

A large number of heuristic search algorithms are available for function optimization. Each of

these heuristics, e.g., simulated annealing, genetic algorithms, tabu search, etc., has been shown

to be effective at finding good solutions efficiently. However, little work has been directed at

determining what are the important problem characteristics for which one algorithm is more effi-

cient than the others. .By examining the characteristics of two problems, the location–allocation

problem and the quadratic assignment problem, problem characteristics for successful tabu search

are illustrated. Recognize that any optimization technique can be fine tuned for a particular prob-

lem, this paper demonstrates that certain problems have characteristics which lend themselves to

a particular standard meta-heuristic.

3

Section 2 introduces the location–allocation problem along with relevant previous research. Sec-

tion 3 presents the details of the tabu-search implementation for the solution of the location–allo-

cation problem. Section 4 examines the problem characteristics of both the location–allocation

problem and the quadratic assignment problem. Owing to the analysis of this section, the concepts

of Tabu search are combined with a genetic algorithm approach.

2.0 Location–Allocation Problem

In the location–allocation (LA) problem, both the location of n new facilities (NFs) and the allo-

cation of the flow requirements of m existing facilities (EFs) to the NFs are determined so that

total transportation costs are minimized. Given m EFs located at known points aj, j = 1,..., m, with

associated flow requirements wj, j = 1,..., m, and the number of NFs, n, from which the flow

requirements of the EFs are satisfied, the location–allocation problem can be formulated as the

following nonlinear combinatorial problem:

where the unknown variable locations of the NFs, Xi, i = 1,..., n, and the allocation of the flow

from each EF j to each NF i, xij, i = 1,..., n, j = 1,..., m, are the decision variables to be determined,

and d(Xi,aj) is the distance between NF i and EF j. Given the allocations, xij, determination of the

locations for each NF i on the continuous plane can be achieved by the solution of a convex non-

linear optimization problem.

The location–allocation problem (1) is a difficult optimization problem because its objective func-

tion is neither convex nor concave [5], resulting in multiple local minima. Optimal solutions to

(1)Minimize xijwjd Xi aj,()
j 1=

m

∑
i 1=

n

∑

subject to
xij

i 1=

n

∑ 1,= j 1 … m, ,=

xij 0 1,[] ,∈ i 1 … n j, , , 1 … m, ,= =

4

the problem must lie at one of the extreme points of the constraint set of problem (1) [5]. Exact

solutions to (1) are generally limited to problems with up to 25 EFs for general lp distances [13]

and up to 35 EFs for rectilinear distances [14]. However, it is not uncommon to have location–

allocation problems which contain hundreds of EFs serviced by dozens of NFs [6].

One method for solving the location–allocation problem, the alternate location–allocation (ALA)

method [4], quickly finds a local minimum solution given a set of starting locations for the NFs.

Other heuristic procedures, which examine multiple local minima by changing the allocation of

one or two of the EFs in the solution found by the ALA method, have only been used to solve

problems with less than 100 EFs and up to 10 NFs [15]. A meta-heuristic procedure which

searches for good starting NF locations for the ALA method has been used to solve much larger

problems, e.g., 500 EFs and 50 NFs [11].

The ALA local improvement procedure was introduced by Cooper [4]. This method works by

starting with a set of NF locations and then finding an optimal allocation of EFs based on those

locations. The optimal NF locations for this allocation are then found. The method continues until

no further allocation changes are made. Finding the optimal locations of the NFs for a given allo-

cation corresponds to solving a continuous single-facility location problem for each NF. Deter-

mining the optimal allocations given the NFs locations corresponds to determining the NF closest

to each EF. Starting from any set of NF locations, the ALA method generates a monotonically

nonincreasing sequence of locations and allocations which lead to a local minimum solution to

the location–allocation problem, where local minimum is defined as a set of locations and alloca-

tions such that the locations are optimal with respect to the allocations and the allocations are

optimal with respect to the locations [13].

Love and Juel [13] present a series of five heuristic procedures which search among local minima

by manipulating a single solution found using the ALA local improvement procedure. The five

heuristics all work by stepping from one local minimum to another. They differ by the mechanism

used to manipulate the single solution and the circumstances under which they make a step to the

next local minimum. The first three heuristics, H1, H2, and H3, make a single switch of the allo-

cation of an EF. The H4 and H5 heuristics perform 2-opt switching; switching the allocation of

two EFs simultaneously. The H4 heuristic makes the first switch that decreases the total cost,

5

whereas the H5 heuristic looks at all possible switches of two EFs and makes the switch which

leads to the greatest reduction in the cost. Love and Juel compared these heuristics on a set of ran-

domly generated rectilinear distance problems ranging in size from m = 12–100 and n = 2–10. For

a series of small problems of up to m = 16 and n = 3, the H4 and H5 heuristics found the known

global optimal solutions, and in all cases the H4 and H5 heuristics yielded identical results. Addi-

tional discussion of these heuristics can be found in Love et al. [15].

Houck, Joines, and Kay [11] examined the location–allocation problem and applied a genetic

algorithm to efficiently search for new facility locations. The GA used to solve the location–allo-

cation problem employs a floating point representation where an individual in the population con-

sists of n(x,y) pairs (i.e., (x1,y1, x2,y2, ..., xn,yn)) representing the locations of the NFs. The GA

used seven genetic operators described by Michalewicz [18] that work with a floating point repre-

sentation: uniform mutation, non–uniform mutation, multi–non–uniform mutation, boundary

mutation, simple crossover, arithmetic crossover, and heuristic crossover. The uniform mutation

operator randomly selects one of the variables, xi or yi, from a parent and sets it equal to a random

number uniformly distributed between the variables lower bound, Lx or Ly, and upper bound, Ux

or Uy. The boundary mutation operator randomly selects one of the variables from a parent and

randomly sets it equal to its lower or upper bound. The non–uniform mutation operator randomly

selects one of the variables, xi or yi, from a parent and sets it equal to a random number from a

non–uniform distribution [18]. In early generations, this operator is similar to the uniform muta-

tion operator, but, as the number of generations increases, the spread of the distribution narrows to

zero, increasing the exploitation of the local solution. The multi–non–uniform mutation operator

applies the non–uniform operator to all of the variables in the parent. The simple crossover opera-

tor randomly selects a cut point dividing each parent into two segments. The first child is created

by combining the first segment from the first parent and the second segment from the second par-

ent. The second child is created from the first segment of the second parent and the second seg-

ment of the first parent. The arithmetic crossover operator produces a complimentary pair of

linear combinations produced from random proportions of the parents. The heuristic crossover

operator produces a child that is a linear extrapolation away from the better parent along the direc-

tion of the vector joining the two parents.

6

The genetic algorithm uses the ALA heuristic to evaluate the NF locations generated by the

genetic operators. The ALA heuristic transforms the problem from a small set of large basins of

the local minima into just the local minima of those basins. The genetic algorithm was compared

to the H4 heuristic and to a multistart using the ALA heuristic. The multistart algorithm for the

location allocation problem is the repeated application of the ALA heuristic applied to randomly

generated NF locations. The genetic algorithm was found to outperform both the H4 heuristic and

multistart in terms of both solution quality and computational efficiency. Also, for moderate sized

problems, up to m = 100 and n = 10, multistart was shown to consistently find the best solution,

outperforming the H4 heuristic.

3.0 Tabu Search for the Location–Allocation Problem

Tabu search [9, 10] is a meta-heuristic which uses memory to guide an iterative search. At each

iteration of the search, a neighborhood is examined to construct new solutions. These solutions

are compared against the memory structure, i.e., tabu list, to prevent cycling. The best new solu-

tion which is not tabu is selected and the system moves to that new solution. This process contin-

ues until a predetermined termination criteria is reached, e.g., every move is tabu or a maximum

number of iterations has been reached.

Tabu search has been found to be very effective for a variety of combinatorial problems [7, 16,

21]. Tabu search has been compared against simulated annealing and genetic search and found to

find better solutions more efficiently for many combinatorial optimization problems [1, 2]. The

location–allocation problem can be viewed as a combinatorial problem when solving for the opti-

mal allocation vector.

A tabu search for the location–allocation problem is developed and presented below. A tabu

search for the location–allocation problem requires the construction of a neighborhood, memory

structure, aspiration criteria, and tabu-list length. Each of these elements of the tabu search, work-

ing on the allocation vector in a similar manner as the heuristics developed by Love et al. [15], is

discussed in detail.

The neighborhood used is the set of all allocations which differ from the current allocation vector

at exactly one existing facility. This is the neighborhood used in the H1–H3 heuristics. The use of

7

this neighborhood generates m(n – 1) neighboring solutions. To evaluate this neighborhood

involves solving mn single facility planar location problems. In the current solution, there are

exactly n distinct star-graph networks, as there is no interaction between the new facilities. All of

the flow of each existing facility is completely assigned to a single new facility; therefore, each

new facility and its allocated existing facilities is an independent network, corresponding to a sin-

gle facility location problem. A neighboring solution involves changing the allocation of existing

facility i, 1 ≤ i ≤ m, from new facility j, 1 ≤ j ≤ n, to new facility k, 1 ≤ k ≤ n, k ≠ j. The total cost

of the neighboring solution can be efficiently found by determining the change in the costs of the

two networks affected by this move, where for new facilities j and k, . The

change in cost for the network associated with new facility j, ∆Cj, is the difference between the

original cost of the network and the cost of the optimal single facility location problem for new

facility j, excluding existing facility i. Similarly, ∆Ck is the difference between the original cost

and the cost of the optimal single facility location problem for new facility k including existing

facility i. Therefore, to evaluate the cost of all m(n – 1) neighboring solutions requires the solving

of mn single facility planar location problems as shown below.

The memory structure, i.e., tabu list, used for this problem records, for all i, j, the last iteration for

which existing facility i was allocated to new facility j. The standard aspiration criteria of allow-

ing a move if it leads to a solution better than the best found so far was used.

The determination of the appropriate tabu list length is critical. As is common, a varying tabu list

size was used, where the length of the tabu list varies uniformly between the lower limit, mSmin,

Neighborhood Evaluation Algorithm

1. i ← 1.
2. j ← the new facility to which existing facility i is allocated.
3. Determine ∆Cj by solving a single facility planar location problem for new facility j

excluding existing facility i.
4. For each k: 1 ≤ k ≤ n, k ≠ j,
4a. Determine ∆Ck by solving a single facility planar location problem for new facility k

including existing facility i.
4b. ∆Tik ← ∆Cj + ∆Ck.
5. i ← i + 1.
6. Repeat from step 2 if i ≤ m.
7. Return ∆Tik as the change in cost associated with each of the neighbors.

Tik∆ Cj Ck∆+∆=

8

and the upper limit, mSmax. The determination of the appropriate range, [mSmin,mSmax.], to allow

the tabu list length to vary was empirical. A set of experiments were run on a moderate sized

problem, m = 100 and n = 10, to determine an appropriate set of bounds. The results of these ini-

tial investigations are shown in Table 1. The results of a t-test show that tabu search using range 5,

[220,240], yields significantly better results than the results of running tabu search with ranges 1,

2, 4 and 6 at an alpha level of 0.05, and better than the results of using range 3 at alpha of 0.16.

While range 5 is statistically superior, this small set of experiments was intended to only provide

a rough estimate of a good range and not to determine an optimal range. Therefore, tabu range 5

was adopted for all further runs of tabu search reported here.

The above tabu search was used to solve the set of test problems described in [11]. The tabu

search was allowed to run for 5 000 iterations. This maximum number of iterations was chosen to

allow tabu search more computational time than the genetic algorithm. Both the genetic algorithm

and the tabu search solve a single facility location problem as a base unit of computation. To com-

pare the computational effort of both algorithms, a record of the number of single facility sub-

problems solved was maintained. The results are shown in Table 2. As the table indicates, tabu

search, when run for 5 000 iterations, solves approximately two orders of magnitude more single

facility location subproblems. While tabu search at each iteration solves the same number of sin-

gle facility subproblems, the GA using the ALA procedure, in general solves a variable number of

single facility subproblems. A 95% confidence interval for the number of single facility subprob-

Table 1: Results of Different Tabu List Length Ranges

Range Smin Smax Span Avg. solution Std. solution

1 0.4 0.6 0.2 6.5657e8 2.65823e7

2 0.8 1.2 0.4 6.40407e8 1.53838e7

3 1.6 2.4 0.8 6.34387e8 2.35536e7

4 0.8 1.0 0.2 6.43163e8 1.80529e7

5 1.6 1.8 0.2 6.21366e8 1.45742e7

6 2.2 2.4 0.2 6.51094e8 2.85804e7

9

lems solved was constructed for the GA to provide a basis for comparison. For each problem

instance, the number of single facility location subproblems solved by the GA passed the Shapiro-

Wilk test for normality at an alpha level of 0.1.

The results of the tabu search were compared to the genetic algorithm operating on the new facil-

ity locations as described in [11]. The results of these experiments are given in Table 3.The last

column of Table 3 indicates the alpha level of significance of not rejecting the hypothesis that the

means of the solutions found by both the GA and tabu search are equal. The solutions found by

both the GA and tabu search were tested for normality using the Shapiro-Wilk test. The problem

instances failing the test at alpha level of 0.1 are indicated in the table. As Table 3 shows, the GA

finds significantly better solutions for the larger problems, i.e., greater than m = 76 and n = 5,

while for smaller problems both tabu search and the GA found the same solution in every replica-

tion. Tabu search for the location–allocation finds significantly worse solutions, even when

allowed more computational time for searching. To examine why tabu search performs worse

than GAs for the location–allocation problem, a study of the characteristics of the problem was

undertaken.

Table 2: Number of Single Facility Subproblems Solved

Problem instance Tabu GA 95% CI

20x3 3.0000e5 [1.4690e4, 1.5030e4]

35x2 3.5000e5 [1.1670e4,1.2120e4]

42x4 8.4000e5 [2.2050e4, 2.2360e4]

65x5 1.6250e6 [2.8997e4, 2.9840e4]

 76x5 1.9000e6 [3.3500e4, 3.4140e4]

 100x10 5.0000e6 [6.6570e4, 6.7612e4]

200x20 2.0000e7 [1.4524e5, 1.4749e5]

250x25 3.1250e7 [1.9342e5, 1.9575e5]

10

4.0 Problem Characteristics

Although the tabu search performed significantly worse than the genetic algorithm (as described

in [11]) for the location–allocation (LA) problem. For other combinatorial problems, tabu search

has been shown to be more efficient than genetic algorithms [1, 2]. To determine why tabu search

has difficulties with the LA problem, the characteristics of the location–allocation problem were

compared to a problem where tabu search has been shown to be more efficient than genetic algo-

rithms, the quadratic-assignment problem (QAP) [19].

Table 4 lists the characteristics of the QAP and the LA problem. Given a n-element QAP and a m-

EF and n-NF LA problem, the table lists the search space size, neighborhood size, maximum

number of transitions, and maximum number of local minima. The search space size is the num-

ber of possible solutions. For the QAP, the search space size is equal to the number of permuta-

tions of n elements; for the LA problem, the search space size is equal to Stirling’s number of the

second kind [8], which represents the number of ways to partition m elements (EFs) to n blocks

(NFs) assuming each block has at least one element (i.e., each NF is assigned to at least one EF).

Table 3: Performance of Tabu Search and Genetic Algorithms

Problem
instance

Tabu search GA
alpha Ho:

Avg. Std. Avg. Std.

35x2 5.981e8 0.000e0 5.981e8 0.000e0 —

20x3 1.402e8 0.000e0 1.402e8 0.000e0 —

42x4 4.904e8 1.666e6 4.896e8 0.000e0 0.178288†

65x5 5.758e8 4.998e6 5.705e8 0.000e0 0.008011†

76x5 8.432e8 0.000e0 8.432e8 0.000e0 —

100x10 6.214e8 1.457e7 6.116e8 0.000e0 0.059137

200x20 7.900e8 1.820e8 7.604e8 0.000e0 0.000443

250x25 9.419e8 2.333e8 8.944e8 2.147e6 0.000076

† The solutions found by tabu search failed the Shapiro-Wilk test for normality at
alpha = 0.1.

GA Tabu=

11

The neighborhood size is the number of solutions that are considered at each step of the local

improvement procedure used for each problem. For the QAP, the neighborhood size is the number

of pairwise interchanges considered from the current solution; for the LA problem, it is the num-

ber of different NFs that can be assigned to each EF times the number of EFs, where one NF is

implicitly determined by the assignment of the other NFs. The maximum number of transitions

represents the maximum number of steps required to transform any starting solution into any

other possible solution. For the QAP, the maximum number of transitions is equal to the maxi-

mum number of pairwise interchanges (i.e., transpositions) required to transform one permutation

to another; for the LA problem, it is equal to a change of the NF assigned to each EF, where, since

all of the NFs are identical, one assignment in any pair of solutions is always correct. The maxi-

mum number of local minima is equal to number of disjoint neighborhoods necessary to cover the

entire search space, and, for each problem, is determined by dividing the search space size of the

problem by the neighborhood size.

In addition to the maximum possible number of local minima as given in Table 4, an estimate of

the actual number of local minima can be determined through random sampling. Let ,

where A is the local optimization function which when applied to a point x leads to the local

optima . The share (or relative region of attraction) of is denoted θi. A number N of random

solutions {x1, x2, …, xN} is generated and the local optimization procedure A is applied to each.

Table 4: Comparison of Characteristics for QAP and Location–Allocation

Characteristic QAP Location–Allocation

Search space size n!

Neighborhood size m(n – 1)

Max. no. transitions n – 1 m – 1

Max. no. of local minima

m

n 
 
  1–() k n k–() m

k! n k–() !

k 0=

n

∑=

n

2 
  n n 1–()

2
----------------------=

n!
n

2 
 
--------- m

n 
 
 

m 1–

A x() xi
*=

xi
* xi

*

12

Let Ni be the number of points xj such that , i.e., the number of times local minimum

i is found. Then if there are l local minima, , , and the random vector

(N1, N2, …, Nl) follows the multinomial distribution [22]

A Bayesian estimate of the number of local minima, l, as well as the relative size of the region of

attraction of each local minima, θi, is given in [20]. The posterior probability that there are K local

minima is

where w different local minima are found as a result of the N searches. The posterior expectation

of the number of local minima is , and the posterior expected relative size of the non-

observed regions of attraction is .

xj() xi
*=

θii 1=
l∑ 1= Nii 1=

l∑ N=

Pr N1 n1 N2, n2 … Nl, , nl= = ={ }
N

n1 … nl, , 
 
 

θ1
n1…θl

nl=

K 1–() !K! N 1–() ! N 2–() !
N K 1–+() ! K w–() !w! w 1–() ! N w– 2–() !

--

w N 1–()
N w– 2–

w w 1+()
N N 1–()

13

At the ith transition of a heuristic using a neighborhood function, the number of new solutions

examined is given by the neighborhood size minus one for the previous solution examined at the

(i – 1)th transition. Therefore, in k transitions the number of solutions examined is

for the location–allocation problem and

for the QAP. The average share of a local minima is the search space size divided by the posterior

expectation of the number of local minima. Therefore, on average, for tabu search to completely

map out the basin of attraction of a local minima would require the neighborhood function to

examine every solution in the basin. Specifically, by setting Eq. (2) (resp. Eq. (3)) equal to the

average share and solving for k provides an estimate of the number of transitions required to com-

pletely map the basin of attraction for the LA problem (resp. QAP).

The characteristics of several instances of both the LA problem and QAP were analyzed using the

formulae given in Table 4 and, in addition, random sampling was used to estimate both the num-

ber of local minima and k, the average number of transitions to map a basin. The LA instances

were taken from [11], or generated in a similar manner. The QAP instances are standard problem

instances taken from Burkard’s QAP library [3]. The results are shown below in Table 5.

The first column identifies the problem instance and parameters, while the next four columns cor-

respond to the characteristics described in Table 4. The observed number of local minima in

Table 5 is the number of distinct local optima found during the course of the random sampling of

(2)

(3)

im n 1–() i–()
i 1=

k

∑ m n 1–() 1–() k k 1+()
2

---------------------=

i
n

2 
  i– 

 

i 1=

k

∑
n

2 
  1– 

  k k 1+()
2

---------------------=

14

the search space as described above. For the QAP instances, it is possible for many different solu-

tions to be zero cost neighbors; this occurs when a pairwise interchange yields a solution with the

same functional value. For this investigation, all zero cost neighbors of a local minimum were

considered to be the same local minimum. Therefore, each minimum was examined to see if a

series of zero cost transitions would yield an already discovered local minimum. The number of

samples (No. samp.) is the number of random starting solutions, N, generated for the search. The

estimated number of local minima is the Bayesian estimate of the number of local minima as

described above. The average number of steps to completely map the basin of attraction (Avg.

map steps) is provided in the last column.

Table 5 shows that as the dimensionality of the problem instances increases, the size of the search

space grows rapidly; e.g., LA 42x4 is over 20 orders of magnitude larger than the LA 20x3. How-

ever, the size of the neighborhood increases at a modest rate. Also, it is interesting to note that the

maximum number of transitions required to move from any solution to any other remains a rela-

tively small number even for the largest problem instance. It is also interesting to observe that,

while the maximum possible number of local minima grows rapidly with problem instance size, it

appears that the actual number of local minima for these problem instances grows much more

slowly.

A comparison of the characteristics of the QAP and the LA problem reveals interesting insights

into why tabu search is successful for the QAP but not the LA problem. The QAP and LA prob-

lem can be compared on the basis of equal sized search spaces, an equal number of solutions con-

sidered by their respective neighborhood functions, or an equal number of maximum transitions

required to move to any other solution. Examples of the results of these comparisons are provided

in Table 6.

15

Table 5: Problem Characteristics

Problem
instance

Search
space
size

Nbr.
size

Max.
no.

trans.

Max. no.
local min.

Obs.
no.

local
min.

No.
samp.

Est. no.
local
min.

Avg.
map

steps k

LA 7x2 63 7 6 9 9 10 000 9 1.11

LA 35x2 1.718e10 35 34 4.909e8 10 10 000 10.01 1.0 1e3

LA 20x3 5.806e8 40 19 1.452e7 37 10 000 37.14 894.87

LA 42x4 8.059e23 126 41 6.396e21 525 10 000 554.15 4.82e9

LA 65x5 2.259e43 260 64 8.689e40 348 10 000 360.59 2.20e20

LA 76x5 1.103e51 304 75 3.628e48 888 10 000 974.66 8.70e22

LA 100x10 2.755e93 900 99 3.061e90 65 302 150 000 115 650 7.28e42

LA 200x20 6.600e241 3800 199 1.737e238 34 473 38 000 371 610 3.06e116

LA 250x25 1.968e324 6000 249 3.280e320 30 000 30 000 † †

QAP scr12 4.790e8 66 11 7.258e6 1 303 25 000 1 374.7 103.04

QAP rou12 4.790e8 66 11 7.258e6 2 497 25 000 2 774.2 72.39

QAP chr12a 4.790e8 66 11 7.258e6 1 684 25 000 1 805.7 89.85

QAP nug12 4.790e8 66 11 7.258e6 1 940 25 000 2 103.3 83.21

QAP scr15 1.308e12 105 14 1.245e10 4 100 25 000 4 904.6 220.44

QAP rou15 1.308e12 105 14 1.245e10 14 391 25 000 33 917 83.52

QAP chr15a 1.308e12 105 14 1.245e10 13 249 25 000 28 191 91.66

QAP nug15 1.308e12 105 14 1.245e10 6 529 25 000 8 837.4 164.10

QAP chr22a 1.124e21 231 21 4.866e18 49 902 50 000 2.599e7 6.13e5

QAP chr22b 1.124e21 231 21 4.866e18 48 241 50 000 1.373e6 2.67e10

QAP ste36a 3.720e41 630 35 5.905e38 29 749 29 750 † †

† - No results after 10 000 CPU minutes of sampling on a 133MHz 604 Power PC Workstation

16

As the examples in Table 6 indicate, the LA problem has far fewer local minima as compared to

an equal sized QAP, regardless of which of the three problem-size criteria are considered. This

corresponds to the LA problem instances having very large basins of attraction about the local

minima. As indicated in Table 5, the average number of iterations for tabu search to map these

basins quickly grows very large. This is consistent with the results presented in Table 3. Tabu

search is unable to escape from the large local minima, while the GA, with its strong random

search component is able to easily jump between local minima. However, for the QAP, where

there are a relatively larger number of local minima, tabu search is able to quickly map out the

basin of attraction and move to a neighboring local minima.

5.0 Genetic Algorithm with Tabu Regions

Based upon the information gained from the above analysis, Tabu search is an effective search

mechanism for the QAP problem but poor for large instances of the Location-Allocation problem.

This is due in part to the problem’s large basins of attraction. Tabu Search was developed prima-

rily to prevent repeatedly searching the same region or cycling between local minima by main-

taining a simple map of regions already searched to date. The Location-Allocation problem is

different from the QAP in the that it has both a combinatorial and continuous aspect. As described

in Section 2, the GA, searching the continuous space using the ALA local improvement proce-

dure, has been shown to be more effective for this problem than a multistart approach utilizing the

same procedure and the tabu search approach presented in this paper.

Table 6: Comparison of Equal Sized QAP and LA Problem Instances

Problem
instance

Problem-
size criteria

Criteria
value

Est. no.
local min.

Avg. map
steps k

QAP scr12 Equal
Search
Space Size

4.790e8 1 303 103.04

LA 20x3 5.806e8 37.14 894.87

QAP scr15 Equal Nbr.
Size

105 4 904.6 220.4

LA 42x4 126 554.15 4.82e9

QAP scr15 Equal No.
Max.
Transitions

14 4 904.6 220.4

LA 20x3 19 37.14 894.87

17

One of the advantages of GAs is they have been shown to exponentially exploit promising regions

of the search space. Owing to their implicit parallelism (i.e., the population of solutions), the GA

may exponentially exploit several regions. This benefit may cause a problem when combining

local improvement procecdures with GAs. As the GA is exponentially exploiting a promising

region, it may be finding solutions in the same basin of attraction when applying the local

improvement.procedure. Therefore, the GA may waste a lot of computational time rediscovering

the same local minima. Especially for the location-allocation problem, which has very large

basins around each of the local minimum, starting the alternate location-allocation heuristic near a

point which has already been examined will most likely result in the rediscovery of the same local

minimum.

In order to prevent this phenomena from occurring, Tabu regions have been added to the GA to

reduce the amount of wasted computation owing to the rediscovery of the same local minimum.

Because the GA is working in the continuous domain, the Tabu list structure used as short term

memory for combinatorial problems (e.g., the list of the past allocations, last pair-wise switches,

etc.) will not be an appropriate memory structure. Instead, using the concepts of global optimiza-

tion [20], hyperspheriods are placed around the already examined points, thus marking a portion

of the search space as tabu.

The genetic algorithm was modified to include the concepts of tabu regions by modifying the way

the genetic algorithm evaluates new solutions using the local improvement procedure. The evalu-

ation routine developed uses a criteria taken from the global optimization literature, specifically

the random linkage algorithm[12], to determine if a local search is appropriate. The details of this

evaluation function is presented below

Tabu regions are incorporated into the genetic algorithm by keeping a list of points already gener-

ated by the GA to date; this list is allowed to grow indefinitely. Every time the genetic algorithm

generates a new point, xk, it first determines the distance, δ, to the nearest point already generated

(i.e., the nearest point on the list). The newly generated point, xk, is placed on the list only if the

distance, δ, is greater than zero, which avoids placing duplicated points onto the list. The algo-

18

rithm then determines whether or not a local search should be performed based on this distance. If

a local search is deemed appropriate, the ALA heuristic is run, and the resulting local minimum is

returned to the GA. Otherwise, no local improvement is conducted, and the new point xk, and the

objective function value at this point are returned to the GA

To determine when to perform a local search (i.e., an appropriate distance δ), the following mea-

sure, , depicted in Eq (4) is used. provides the probability of starting a local search

based on the distance to the nearest point already generated, δ. The tabu regions or hyperspheres,

αk, taken from [12], are used by to determine if a local search is necessary.

All points within a radius of 1/2αk are marked tabu, where k is the total number of search points

generated by the genetic algorithm to date, all points from 1/2αk to 3/2αk result in a probability of

conducting a local search. This yields a gradual boundary around previously explored points. This

provides a criteria for determining whether or not to perform a local search in order to prevent

starting local searches too close to points already examined.

where

(4)

ϕk δ() ϕk δ()

ϕk δ()

0 δ 0.5αk≤

δ 0.5αk–

αk
---------------------- 0.5αk δ 1.5αk≤ ≤

1 δ 1.5αk≥







=

αk π 1 2/– Γ 1 d
2
---+ 

  µ Ω() σ klog
k

---------- 
  1 d/

=

σ 10000=

d Dimensionality of the problem=

µ Ω() Lebesgue measure of the search space, e.g., vol(Ω) inℜn
=

19

This measure yields a series of monotonically decreasing hyperspheres(αk) placed around each

examined point. Therefore, the size of the tabu regions around each of these already examined

points decreases as the search progresses (i.e., this provides a short term memory similar to tradi-

tional Tabu search). This also overcomes the problem of unknown minima sizes, ensuring, that

smaller minima can be located as the search progresses. While at first the emphasis of the search

process is on diversity, due to the large hyperspheres preventing much local search, as the search

continues, αk decreases so that, even though the probability of repeating a search increases, the

probability of missing an unexplored local minimum decreases.

The GA with tabu regions (GA-Tabu) was run on the LA 200x20 and LA 250x25 location-alloca-

tion test problem instances, instances where pure tabu-search had problems locating the optimal

solution. The results of the mean number of function evaluations over 30 replications are shown

below in Table 7, where a function evaluation is considered to be either the solving of the location

subproblem, or the solving of the allocation subproblem.

The table shows that for these larger location-allocation problem instances, the addition of tabu

regions around already explored points yields quicker convergence to the best known solution.

For the LA 200x20 instance, the addition of the tabu-regions yields significantly quicker conver-

gence. However, for the LA 250x25 instance, while the difference in the means is large, there is a

high degree of variability in the number of function evaluations required to locate the best known

solution for this test problem instance. Therefore, the significance of the difference between the

two means is low.

6.0 Conclusions

Tabu search provides a mechanism for systematically mapping out basins of attraction for local

minima, thereby allowing the search to move to neighboring local minima. For problems with a

Table 7: Number of function evaluations

Problem
Instance

GA GA-Tabu alpha Ho:

LA200 20 523 16 856 0.0595

LA250 73 518 47 886 0.4138

GA GA-Tabu=

20

large number of small basins, tabu search is an efficient means of exploring the local minima.

However, for problems with few local minima, each with a very large basin of attraction, tabu

search is unable to map the basin and is therefore unable to escape the local minimum to explore

neighboring minima. For these problems, randomized search can be expected to perform very

well.

An investigation of two problems, the location–allocation (LA) problem and the quadratic assign-

ment problem (QAP) show that the LA problem has a small number of local minima with very

large basins of attraction while the QAP has a large number of local minima with small basins of

attraction. As expected, randomized search and a variant of randomized search, genetic algo-

rithms, yield very good solutions for the LA problem, while tabu search performs relatively

poorly.

The properites of tabu search (i.e., memory of the search to date) was combined with genetic

algorithms and tested on two location-allocation problems. The combination algorithm performed

favorably, as compared to the genetic algorithm, in terms of computational efficiency.

References

[1] E. Aarts, P. van Laarhoven, J. Lenstra, and N. Ulder. A computational study of local search
algorithms for job shop scheduling. ORSA Journal on Computing, 6(2):118–125, 1994.

[2] R. Battiti and G. Tecchiolli. Simulated annealing and tabu search in the long run: A compa-
rision on QAP tasks. Computers and Mathematical Apllications, 1994.

[3] R. Burkard, S. Karisch, and F. Rendl. QAPLIB-a quadratic assignment problem library.
EJOR, 55:115–119, 1991.

[4] L. Cooper. Location-allocation problems. Operations Research, 11:331–343, 1963.

[5] L. Cooper. The transportation-location problems. Operations Research, 20:94–108, 1972.

[6] M. S. Daskin and P. C. Jones. A new approach to solving applied location/allocation prob-
lems. Microcomputers in Civil Engineering, 8:409–421, 1993.

[7] M. Dell’Amico and M. Trubian. Applying tabu search to the job-shop scheduling problem.
Annals of Operation Research, 41:231–252, 1993.

[8] R. Francis and J. White. Facility Layout and Location: An Analytical Approach. Prentic-
Hall, Englewood Cliffs, NJ, 1974.

[9] F. Glover. Tabu search - part I. ORSA Journal of Computing, 3:190–206, 1989.

[10] F. Glover. Tabu search - part II. ORSA Journal of Computing, 1:4–32, 1990.

21

[11] C. R. Houck, J. A. Joines, and M. G. Kay. Comparison of genetic algorithms, random restart,
and two-opt switching for solving large location-allocation problems. Computers and Oper-
ations Research, 23(6), 1996.

[12] M. Locatelli and F. Schoen. Random linkage: a family of accptance/rejection algorithms for
global optimization. Technical Report 156-96, University of Milano, 1996.

[13] R. Love and H. Juel. Properties and solution methods for large location-allocation problems
with rectangular distances. Journal Operations Research Society, 33:443–452, 1982.

[14] R. Love and J. Morris. A computational procedure for the exact solution of location-alloca-
tion problems with rectangular distances. Naval Research Logistics Quarterly, 22:441–453,
1975.

[15] R. Love, J. G. Morris, and G. O. Wesolowshy. Facilities Location: Models & Methods.
North-Holland, New York, 1988.

[16] M. Malek, M. Guruswamy, P. M., and O. H. Serial and parallel simulated annealing and tabu
search algorithms for the travelling salesman problem. Annals of Operations Research,
21:59–84, 1989.

[17] O. Martin and S. Otto. Combining simulated annealing with local search heuristics. Annals
of OR, 62, 1996.

[18] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolutionary Programs. Springer-
Verlang, New York, 1st edition, 1992.

[19] V. Nissen. Solving the quadratic assignment problem with clues from nature. IEEE Trans-
actions on neural networks, 5(1):66–72, 1994.

[20] A. Rinnooy Kay and G. Timmer. Stochastic global optimization methods part I: Clustering
methods. Mathematical Programming, 39:27–56, 1987.

[21] E. Taillard. Taboo search for the quadratic assignment problem. Parallel Computing,
17:443–455, 1991.

[22] A. A. Zhigljavsky. Theory of Global Random Search, volume 65 of Mathematics and Its Ap-
plications (Soviet Series). Kluwer Academic Publishers, 1991.

